recurrent_op.h 6.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"

namespace paddle {
namespace operators {

namespace rnn {

/**
 * Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
 *
 * Memory attributes cached by this op, dims will be infered from
 * boot memories in father scope. Other attributes are copied from Op's proto
 * attributes.
 */
struct MemoryAttr {
  // name of current state variable
  std::string var;
  // name of previous step's state variable
  std::string pre_var;
  // name of the variables to init this memory (same role of `boot_layer` in
  // PaddlePaddle), which is store in father's scope.
  std::string boot_var;
};

struct Link {
  // input or output links name.
  std::string internal;
  // alias to avoid duplicate keys in scopes.
  std::string external;
};

struct Argument {
  std::string step_net;
  std::string step_scopes;
  std::vector<Link> inlinks;
  std::vector<Link> outlinks;
  std::vector<rnn::MemoryAttr> memories;
};

struct ArgumentName {
  std::string step_net;
  std::string step_scopes;
  std::string inlinks;
  std::string outlinks;
  std::string inlink_alias;   // the alias of inlinks in step net.
  std::string outlink_alias;  // the alias of outlinks in step net.
  std::string memories;       // the memory name
  std::string pre_memories;   // the previous memory name
  std::string boot_memories;  // the boot memory name
};

/**
 * Prepare inputs for each step net.
 */
Y
Yi Wang 已提交
71
void SegmentInputs(const std::vector<framework::Scope*>& step_scopes,
72
                   const std::vector<Link>& inlinks, const size_t seq_len,
D
dangqingqing 已提交
73
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
74 75 76 77

/**
 * Process outputs of step nets and merge to variables.
 */
Y
Yi Wang 已提交
78
void ConcatOutputs(const std::vector<framework::Scope*>& step_scopes,
79
                   const std::vector<Link>& outlinks, const size_t seq_len,
D
dangqingqing 已提交
80
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
81

Y
Yi Wang 已提交
82
void LinkMemories(const std::vector<framework::Scope*>& step_scopes,
83 84
                  const std::vector<MemoryAttr>& memories, const size_t step_id,
                  const int offset, bool infer_shape_mode);
Y
Yan Chunwei 已提交
85 86 87 88 89 90

void InitArgument(const ArgumentName& name, Argument* arg);

};  // namespace rnn

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
L
liaogang 已提交
91
// TODO(Yan Chunwei):
Y
Yan Chunwei 已提交
92 93 94 95 96 97 98
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
99
 public:
Y
Yi Wang 已提交
100 101
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
102 103 104 105 106 107

  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
108
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
109

110
 protected:
Y
Yan Chunwei 已提交
111 112 113 114 115 116
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Y
Yi Wang 已提交
117
  void CreateScopes(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
118

Y
Yi Wang 已提交
119 120 121 122
  const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
123 124
  }

Y
Yi Wang 已提交
125
  void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
126

127
 private:
Y
Yan Chunwei 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
143
 public:
Y
Yan Chunwei 已提交
144 145
  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

Y
Yi Wang 已提交
146 147
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
148

Y
Yi Wang 已提交
149 150
  void LinkBootMemoryGradients(framework::Scope* step_scopes,
                               bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
151 152 153 154

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
155
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
156

157
 protected:
Y
Yi Wang 已提交
158 159 160 161
  inline const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
162 163
  }

164
 private:
Y
Yan Chunwei 已提交
165 166 167 168
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

Y
Yi Wang 已提交
169
class RecurrentOp final : public framework::OperatorBase {
170
 public:
Y
Yan Chunwei 已提交
171 172 173 174 175
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
176 177 178
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
179

Y
Yi Wang 已提交
180
  void Run(const framework::Scope& scope,
L
liaogang 已提交
181
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
182 183 184 185 186
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

187
 private:
Y
Yan Chunwei 已提交
188 189 190
  RecurrentAlgorithm alg_;
};

Y
Yi Wang 已提交
191
class RecurrentGradientOp final : public framework::OperatorBase {
192
 public:
Y
Yan Chunwei 已提交
193 194 195 196 197
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
198 199 200
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
201

Y
Yi Wang 已提交
202
  void Run(const framework::Scope& scope,
L
liaogang 已提交
203
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
204 205 206 207 208
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

209
 private:
Y
Yan Chunwei 已提交
210 211 212 213 214
  RecurrentGradientAlgorithm alg_;
};

}  // namespace operators
}  // namespace paddle