api_impl.cc 11.3 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/memory/memcpy.h"
28
#include "paddle/fluid/platform/cpu_helper.h"
29 30 31
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
32 33

namespace paddle {
34 35 36 37 38 39 40 41 42 43
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
44

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
66
  VLOG(3) << "Predictor::init()";
67 68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

76
  // no matter with or without MKLDNN
L
luotao1 已提交
77
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
78

Y
Yan Chunwei 已提交
79
  if (config_.use_gpu) {
X
Xin Pan 已提交
80 81 82 83
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
84 85 86
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
87
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
88 89 90 91
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
92

X
Xin Pan 已提交
93
  executor_.reset(new paddle::framework::Executor(place_));
94

X
Xin Pan 已提交
95 96 97 98
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
99 100
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
101 102 103 104 105 106 107
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
108
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
109 110
    return false;
  }
111

X
Xin Pan 已提交
112
  ctx_ = executor_->Prepare(*inference_program_, 0);
113 114
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
115

X
Xin Pan 已提交
116
  // Get the feed_target_names and fetch_target_names
117
  PrepareFeedFetch();
X
Xin Pan 已提交
118 119 120
  return true;
}

121
NativePaddlePredictor::~NativePaddlePredictor() {
122 123 124 125
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
126 127 128
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
129
}
130

Y
Yan Chunwei 已提交
131
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
132 133
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
L
luotao1 已提交
134 135 136
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
137
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
138 139 140
  Timer timer;
  timer.tic();
  // set feed variable
141 142
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
143 144 145 146 147
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
148
  VLOG(4) << "Run prepared context";
149 150
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
151
                                false /* don't create variable each time */);
152
  VLOG(4) << "Finish prepared context";
153 154
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
155
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
156 157
    return false;
  }
M
minqiyang 已提交
158
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
159

Y
Yan Chunwei 已提交
160 161 162
  // For some other vector like containers not cleaned after each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(scope_.get());
  tensor_array_batch_cleaner_.ResetNoTensorVars();
X
Xin Pan 已提交
163 164 165
  return true;
}

Y
Yan Chunwei 已提交
166
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
Y
Yan Chunwei 已提交
167 168
  std::lock_guard<std::mutex> lk(clone_mutex_);
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
169
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
Y
Yan Chunwei 已提交
170 171 172
  // Hot fix the bug that result diff in multi-thread.
  // TODO(Superjomn) re-implement a real clone here.
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
Y
Yan Chunwei 已提交
173
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
174 175
    return nullptr;
  }
Y
Yan Chunwei 已提交
176

J
Fix mac  
JiabinYang 已提交
177 178 179 180
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
181 182
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
183
#endif
X
Xin Pan 已提交
184 185
}

Y
Yan Chunwei 已提交
186
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
187
                                    framework::Scope *scope) {
188
  VLOG(3) << "Predictor::set_feed";
189
  if (inputs.size() != feeds_.size()) {
190 191
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
192 193
    return false;
  }
194 195 196 197

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

198
  for (size_t i = 0; i < inputs.size(); ++i) {
199
    auto &input = feed_tensors_[i];
200
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
201 202
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
203
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
X
Xin Pan 已提交
204
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
205
      input_ptr = input.mutable_data<float>(ddim, place_);
X
Xin Pan 已提交
206 207 208 209 210
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

211 212 213 214 215 216
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
217 218 219 220
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
221 222 223
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
224
                   inputs[i].data.length(), dev_ctx->stream());
225 226 227 228 229
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }

Y
Yan Chunwei 已提交
230 231 232 233 234 235
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
236 237
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
238
      idx = feed_names_[inputs[i].name];
239 240 241 242
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
243 244 245
  }
  return true;
}
L
luotao1 已提交
246 247 248
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
263 264
  }
}
X
Xin Pan 已提交
265

266 267
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
268
  VLOG(3) << "Predictor::get_fetch";
269 270 271
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
272 273
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
274
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
275 276
    auto type = fetch.type();
    auto output = &(outputs->at(i));
277
    output->name = fetchs_[idx]->Input("X")[0];
Y
Yu Yang 已提交
278
    if (type == framework::DataTypeTrait<float>::DataType) {
L
luotao1 已提交
279 280
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
281
    } else if (type == framework::DataTypeTrait<int64_t>::DataType) {
L
luotao1 已提交
282 283
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
284
    } else {
L
luotao1 已提交
285
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
286
    }
X
Xin Pan 已提交
287 288 289 290
  }
  return true;
}

291
template <>
292 293
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
294
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
295
  if (config.use_gpu) {
S
Sylwester Fraczek 已提交
296
    // 1. GPU memory
297
    PADDLE_ENFORCE_GE(
298
        config.fraction_of_gpu_memory, 0.f,
299
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
300
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
301 302 303 304 305
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
306
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
307
      flags.push_back(flag);
308
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
309 310
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
311
  }
312

Y
Yan Chunwei 已提交
313
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
314
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
315 316
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
317
#ifdef __clang__
J
Jiabin Yang 已提交
318
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
319 320
  return predictor;
#else
321
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
322
#endif
X
Xin Pan 已提交
323 324
}

Y
Yan Chunwei 已提交
325 326 327 328 329 330
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
331
}  // namespace paddle