analyzer_tester.cc 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
L
luotao1 已提交
19
#include <thread>  // NOLINT
Y
Yan Chunwei 已提交
20
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
21
#include "paddle/fluid/framework/ir/pass.h"
22
#include "paddle/fluid/inference/analysis/ut_helper.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/inference/api/analysis_predictor.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
26
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
28

Y
Yan Chunwei 已提交
29 30
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
31 32
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
L
luotao1 已提交
33
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
34

35 36 37 38
namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
39
using namespace framework;  // NOLINT
Y
Yan Chunwei 已提交
40

Y
Yan Chunwei 已提交
41
TEST(Analyzer, analysis_without_tensorrt) {
42
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
43 44
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
45 46 47 48
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
49
TEST(Analyzer, analysis_with_tensorrt) {
50
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
51 52
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
53 54 55 56
  Analyzer analyser;
  analyser.Run(&argument);
}

57
void TestWord2vecPrediction(const std::string &model_path) {
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
88 89
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
90 91 92 93
                   result[i]);
  }
}

94 95 96 97 98 99 100 101 102 103 104
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
105
  explicit DataRecord(const std::string &path, int batch_size = 1)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
186 187 188
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
189 190 191 192 193 194
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
195 196 197 198
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
199
  week_tensor.lod.assign({one_batch.lod3});
200 201 202
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
203
  minute_tensor.lod.assign({one_batch.lod3});
204
  // clang-format on
205
  // assign data
L
luotao1 已提交
206 207
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
208
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
L
luotao1 已提交
209 210 211 212
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
213 214 215 216 217 218 219 220 221 222 223 224 225
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

}  // namespace

L
luotao1 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<PaddleTensor> &base_outputs) {
  PADDLE_ENFORCE_GT(outputs.size(), 0);
  PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &base_out = base_outputs[i];
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
    size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(),
                                   1, [](int a, int b) { return a * b; });
    PADDLE_ENFORCE_EQ(size, size1);
    PADDLE_ENFORCE_GT(size, 0);
    float *data = static_cast<float *>(out.data.data());
    float *base_data = static_cast<float *>(base_out.data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(data[i], base_data[i], 1e-3);
    }
  }
}
246
// Test with a really complicate model.
Y
Yan Chunwei 已提交
247
void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
248
  AnalysisConfig config;
Y
Yan Chunwei 已提交
249 250
  config.prog_file = FLAGS_infer_model + "/__model__";
  config.param_file = FLAGS_infer_model + "/param";
251 252 253
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
254 255 256 257
  config.enable_ir_optim = activate_ir;
  PADDLE_ENFORCE(config.ir_mode ==
                 AnalysisConfig::IrPassMode::kExclude);  // default
  config.ir_passes.clear();  // Do not exclude any pass.
Y
Yan Chunwei 已提交
258

L
luotao1 已提交
259 260
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
261

262
  auto base_predictor =
263
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
264
  auto predictor =
265 266
      CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
          config);
267
  std::vector<PaddleTensor> input_slots;
Y
Yan Chunwei 已提交
268
  DataRecord data(FLAGS_infer_data, batch_size);
269 270
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
271 272 273
  std::vector<PaddleTensor> outputs, base_outputs;

  base_predictor->Run(input_slots, &base_outputs);
274

L
luotao1 已提交
275 276 277 278 279 280 281
  if (num_threads == 1) {
    // Prepare inputs.
    Timer timer;
    timer.tic();
    for (int i = 0; i < num_times; i++) {
      predictor->Run(input_slots, &outputs);
    }
L
luotao1 已提交
282 283
    PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times);
    CompareResult(outputs, base_outputs);
L
luotao1 已提交
284 285
  } else {
    std::vector<std::thread> threads;
L
luotao1 已提交
286 287 288 289 290
    std::vector<std::unique_ptr<PaddlePredictor>> predictors;
    // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
    // because AttentionLSTM's hard code nodeid will be damanged.
    for (int tid = 0; tid < num_threads; ++tid) {
      predictors.emplace_back(
L
luotao1 已提交
291
          CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
L
luotao1 已提交
292 293
              config));
    }
L
luotao1 已提交
294 295
    for (int tid = 0; tid < num_threads; ++tid) {
      threads.emplace_back([&, tid]() {
L
luotao1 已提交
296 297
        // Each thread should have local input_slots and outputs.
        std::vector<PaddleTensor> input_slots;
Y
Yan Chunwei 已提交
298
        DataRecord data(FLAGS_infer_data, batch_size);
L
luotao1 已提交
299 300
        PrepareInputs(&input_slots, &data, batch_size);
        std::vector<PaddleTensor> outputs;
L
luotao1 已提交
301 302 303
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
304
          predictors[tid]->Run(input_slots, &outputs);
L
luotao1 已提交
305
        }
L
luotao1 已提交
306 307 308
        PrintTime(batch_size, num_times, num_threads, tid,
                  timer.toc() / num_times);
        CompareResult(outputs, base_outputs);
L
luotao1 已提交
309 310 311 312 313 314
      });
    }
    for (int i = 0; i < num_threads; ++i) {
      threads[i].join();
    }
  }
315

L
luotao1 已提交
316
  if (use_analysis && activate_ir) {
Y
Yan Chunwei 已提交
317 318 319 320 321 322 323 324 325
    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }

Y
Yan Chunwei 已提交
326 327 328 329 330 331 332 333 334 335 336 337
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;

    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
Y
Yan Chunwei 已提交
338
    EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
Y
Yan Chunwei 已提交
339 340
    EXPECT_EQ(num_ops,
              13);  // After graph optimization, only 13 operators exists.
Y
Yan Chunwei 已提交
341
  }
342 343
}

L
luotao1 已提交
344
// Inference with analysis and IR, easy for profiling independently.
Y
Yan Chunwei 已提交
345
TEST(Analyzer, rnn1) { TestRNN1Prediction(true, true, FLAGS_num_threads); }
346

Y
Yan Chunwei 已提交
347
// Other unit-tests of RNN1, test different options of use_analysis,
L
luotao1 已提交
348
// activate_ir and multi-threads.
Y
Yan Chunwei 已提交
349
TEST(Analyzer, RNN_tests) {
L
luotao1 已提交
350 351 352
  int num_threads[2] = {1, 4};
  for (auto i : num_threads) {
    // Directly infer with the original model.
Y
Yan Chunwei 已提交
353
    TestRNN1Prediction(false, false, i);
L
luotao1 已提交
354 355 356
    // Inference with the original model with the analysis turned on, the
    // analysis
    // module will transform the program to a data flow graph.
Y
Yan Chunwei 已提交
357
    TestRNN1Prediction(true, false, i);
L
luotao1 已提交
358 359
    // Inference with analysis and IR. The IR module will fuse some large
    // kernels.
Y
Yan Chunwei 已提交
360
    TestRNN1Prediction(true, true, i);
L
luotao1 已提交
361
  }
362 363
}

364 365 366
}  // namespace analysis
}  // namespace inference
}  // namespace paddle