MKLDNNAddtoLayer.cpp 7.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNAddtoLayer.h"

using namespace mkldnn;  // NOLINT

namespace paddle {

REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer);

bool MKLDNNAddtoLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

  layerSize_ = getSize();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal";
  }
  if (biasParameter_.get() != NULL) {
    biases_ =
        std::unique_ptr<Weight>(new Weight(1, layerSize_, biasParameter_, 0));
  }
  return true;
}

void MKLDNNAddtoLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed";
  reshapeInput(bs, ih, iw);
  ic = inputLayers_[0]->getSize() / ih / iw;
  CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
  CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw);
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize());
    CHECK_EQ(layerSize_, inputLayers_[i]->getSize());
  }

  oc = ic;
  oh = ih;
  ow = iw;
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);
  printSizeInfo();
}

void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
                                MKLDNNMatrixPtr& in,
                                MKLDNNMatrixPtr& wgt,
                                MKLDNNMatrixPtr& bias,
                                MKLDNNMatrixPtr& out) {
T
tensor-tang 已提交
65
  resetFwdBuffers(inVals_, bias, out);
T
tensor-tang 已提交
66 67 68
  in = inVals_[0];

  std::shared_ptr<sum::primitive_desc> fwdPD;
T
tensor-tang 已提交
69 70
  std::shared_ptr<sum::primitive_desc> biasPD;
  resetFwdPD(fwdPD, biasPD, inVals_, bias, out);
T
tensor-tang 已提交
71

T
tensor-tang 已提交
72
  resetFwdPipeline(pipeline, fwdPD, biasPD, inVals_, bias, out);
T
tensor-tang 已提交
73 74 75 76 77 78 79
}

void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
                                MKLDNNMatrixPtr& in,
                                MKLDNNMatrixPtr& wgt,
                                MKLDNNMatrixPtr& bias,
                                MKLDNNMatrixPtr& out) {
T
tensor-tang 已提交
80
  resetBwdBuffers(inGrads_, bias, out);
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89
  in = inGrads_[0];

  // backward only need share output grad to input grad
  for (size_t i = 0; i < inGrads_.size(); i++) {
    if (inGrads_[i] != nullptr) {
      inGrads_[i] = out;
      inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData());
    }
  }
T
tensor-tang 已提交
90 91 92 93

  // backward bias
  bwdBias_ = nullptr;
  if (bias) {
T
tensor-tang 已提交
94
    std::vector<float> scales(bs_, 1.0);
T
tensor-tang 已提交
95 96 97 98 99 100 101 102 103
    std::vector<memory::primitive_desc> srcPDs(bs_, bias->getPrimitiveDesc());
    auto biasPD = sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs);
    std::vector<primitive::at> srcs;
    for (size_t i = 0; i < grads_.size(); ++i) {
      srcs.push_back(*(grads_[i]));
    }
    bwdBias_.reset(new sum(biasPD, srcs, *bias));
    pipeline.push_back(*bwdBias_);
  }
T
tensor-tang 已提交
104 105 106 107 108 109 110 111
}

void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
                                   const MatrixPtr& biasMat,
                                   const MKLDNNMatrixPtr& out,
                                   std::vector<MKLDNNMatrixPtr>& outs) {
  auto pd = MKLDNNMatrix::createPrimitiveDesc(
      {(int)layerSize_}, memory::format::x, engine_);
  bias = MKLDNNMatrix::create(pd, biasMat);
  outs.clear();
  real* data = out->getData();
  CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
  for (int i = 0; i < bs_; ++i) {
    MatrixPtr tmp =
        Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
    outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
  }
}

T
tensor-tang 已提交
129
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
130
                                       MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139 140 141 142
                                       MKLDNNMatrixPtr& out) {
  inputs.resize(inputLayers_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
    resetInValue(inputs[i], nullptr, i);
    CHECK(inputs[i]);
    inputs[i]->downSpatial();
  }
  for (size_t i = 1; i < inputs.size(); i++) {
    CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc());
  }

  resetOutValue(out, inputs[0]->getPrimitiveDesc());
T
tensor-tang 已提交
143 144 145 146 147 148

  if (biases_ && biases_->getW()) {
    prepareBias(bias, biases_->getW(), out, vals_);
  } else {
    bias = nullptr;
  }
T
tensor-tang 已提交
149 150 151
}

void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
T
tensor-tang 已提交
152
                                  std::shared_ptr<sum::primitive_desc>& biasPD,
T
tensor-tang 已提交
153
                                  std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
154
                                  MKLDNNMatrixPtr bias,
T
tensor-tang 已提交
155
                                  MKLDNNMatrixPtr out) {
T
tensor-tang 已提交
156
  std::vector<float> scales(inputs.size(), 1.0);
T
tensor-tang 已提交
157 158 159 160 161 162 163
  std::vector<memory::primitive_desc> srcPDs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcPDs.push_back(inputs[i]->getPrimitiveDesc());
  }
  CHECK(out);
  pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
  CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
T
tensor-tang 已提交
164 165 166

  biasPD = nullptr;
  if (bias) {
T
tensor-tang 已提交
167
    std::vector<float> scales(2, 1.0);
T
tensor-tang 已提交
168 169 170 171 172
    std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
    biasPD.reset(
        new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
    CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
  }
T
tensor-tang 已提交
173 174 175 176 177
}

void MKLDNNAddtoLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<sum::primitive_desc>& pd,
T
tensor-tang 已提交
178
    std::shared_ptr<sum::primitive_desc>& biasPD,
T
tensor-tang 已提交
179
    std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
180
    MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
181 182 183 184 185 186 187
    MKLDNNMatrixPtr& out) {
  std::vector<primitive::at> srcs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcs.push_back(*(inputs[i]));
  }
  fwd_.reset(new sum(*pd, srcs, *out));
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200

  fwdBias_.clear();
  if (biasPD == nullptr || bias == nullptr) {
    return;
  }
  fwdBias_.resize(vals_.size());
  for (size_t i = 0; i < vals_.size(); ++i) {
    std::vector<primitive::at> srcs;
    srcs.push_back(*(vals_[i]));
    srcs.push_back(*bias);
    fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
    pipeline.push_back(*fwdBias_[i]);
  }
T
tensor-tang 已提交
201 202 203
}

void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
204
                                       MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
205 206 207 208 209 210 211 212 213 214
                                       MKLDNNMatrixPtr& out) {
  CHECK(outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  CHECK(out);

  inputs.resize(inputLayers_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
    resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i);
    CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
  }
T
tensor-tang 已提交
215 216 217 218 219 220

  if (biases_ && biases_->getWGrad()) {
    prepareBias(bias, biases_->getWGrad(), out, grads_);
  } else {
    bias = nullptr;
  }
T
tensor-tang 已提交
221 222 223
}

}  // namespace paddle