post_process.py 10.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2

from .logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['nms']


def box_flip(boxes, im_shape):
    im_width = im_shape[0][1]
    flipped_boxes = boxes.copy()

    flipped_boxes[:, 0::4] = im_width - boxes[:, 2::4] - 1
    flipped_boxes[:, 2::4] = im_width - boxes[:, 0::4] - 1
    return flipped_boxes


def nms(dets, thresh):
    """Apply classic DPM-style greedy NMS."""
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    # nominal indices
    # _i, _j
    # sorted indices
    # i, j
    # temp variables for box i's (the box currently under consideration)
    # ix1, iy1, ix2, iy2, iarea

    # variables for computing overlap with box j (lower scoring box)
    # xx1, yy1, xx2, yy2
    # w, h
    # inter, ovr

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets


def soft_nms(dets, sigma, thres):
    dets_final = []
    while len(dets) > 0:
        maxpos = np.argmax(dets[:, 0])
        dets_final.append(dets[maxpos].copy())
        ts, tx1, ty1, tx2, ty2 = dets[maxpos]
        scores = dets[:, 0]
        # force remove bbox at maxpos
        scores[maxpos] = -1
        x1 = dets[:, 1]
        y1 = dets[:, 2]
        x2 = dets[:, 3]
        y2 = dets[:, 4]
        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        xx1 = np.maximum(tx1, x1)
        yy1 = np.maximum(ty1, y1)
        xx2 = np.minimum(tx2, x2)
        yy2 = np.minimum(ty2, y2)
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas + areas[maxpos] - inter)
        weight = np.exp(-(ovr * ovr) / sigma)
        scores = scores * weight
        idx_keep = np.where(scores >= thres)
        dets[:, 0] = scores
        dets = dets[idx_keep]
    dets_final = np.array(dets_final).reshape(-1, 5)
    return dets_final


def bbox_area(box):
    w = box[2] - box[0] + 1
    h = box[3] - box[1] + 1
    return w * h


def bbox_overlaps(x, y):
    N = x.shape[0]
    K = y.shape[0]
    overlaps = np.zeros((N, K), dtype=np.float32)
    for k in range(K):
        y_area = bbox_area(y[k])
        for n in range(N):
            iw = min(x[n, 2], y[k, 2]) - max(x[n, 0], y[k, 0]) + 1
            if iw > 0:
                ih = min(x[n, 3], y[k, 3]) - max(x[n, 1], y[k, 1]) + 1
                if ih > 0:
                    x_area = bbox_area(x[n])
                    ua = x_area + y_area - iw * ih
                    overlaps[n, k] = iw * ih / ua
    return overlaps


def box_voting(nms_dets, dets, vote_thresh):
    top_dets = nms_dets.copy()
    top_boxes = nms_dets[:, 1:]
    all_boxes = dets[:, 1:]
    all_scores = dets[:, 0]
    top_to_all_overlaps = bbox_overlaps(top_boxes, all_boxes)
    for k in range(nms_dets.shape[0]):
        inds_to_vote = np.where(top_to_all_overlaps[k] >= vote_thresh)[0]
        boxes_to_vote = all_boxes[inds_to_vote, :]
        ws = all_scores[inds_to_vote]
        top_dets[k, 1:] = np.average(boxes_to_vote, axis=0, weights=ws)

    return top_dets


def get_nms_result(boxes,
                   scores,
                   config,
                   num_classes,
                   background_label=0,
                   labels=None):
    has_labels = labels is not None
    cls_boxes = [[] for _ in range(num_classes)]
    start_idx = 1 if background_label == 0 else 0
    for j in range(start_idx, num_classes):
        inds = np.where(labels == j)[0] if has_labels else np.where(
            scores[:, j] > config['score_thresh'])[0]
        scores_j = scores[inds] if has_labels else scores[inds, j]
        boxes_j = boxes[inds, :] if has_labels else boxes[inds, j * 4:(j + 1) *
                                                          4]
        dets_j = np.hstack((scores_j[:, np.newaxis], boxes_j)).astype(
            np.float32, copy=False)
        if config.get('use_soft_nms', False):
            nms_dets = soft_nms(dets_j, config['sigma'], config['nms_thresh'])
        else:
            nms_dets = nms(dets_j, config['nms_thresh'])
        if config.get('enable_voting', False):
            nms_dets = box_voting(nms_dets, dets_j, config['vote_thresh'])
        #add labels
        label = np.array([j for _ in range(len(nms_dets))])
        nms_dets = np.hstack((label[:, np.newaxis], nms_dets)).astype(
            np.float32, copy=False)
        cls_boxes[j] = nms_dets
    # Limit to max_per_image detections **over all classes**
    image_scores = np.hstack(
        [cls_boxes[j][:, 1] for j in range(start_idx, num_classes)])
    if len(image_scores) > config['detections_per_im']:
        image_thresh = np.sort(image_scores)[-config['detections_per_im']]
        for j in range(start_idx, num_classes):
            keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0]
            cls_boxes[j] = cls_boxes[j][keep, :]

    im_results = np.vstack(
        [cls_boxes[j] for j in range(start_idx, num_classes)])
    return im_results


def mstest_box_post_process(result, config, num_classes):
    """
    Multi-scale Test
    Only available for batch_size=1 now.
    """
    post_bbox = {}
    use_flip = False
    ms_boxes = []
    ms_scores = []
    im_shape = result['im_shape'][0]
    for k in result.keys():
        if 'bbox' in k:
            boxes = result[k][0]
            boxes = np.reshape(boxes, (-1, 4 * num_classes))
            scores = result['score' + k[4:]][0]
            if 'flip' in k:
                boxes = box_flip(boxes, im_shape)
                use_flip = True
            ms_boxes.append(boxes)
            ms_scores.append(scores)

    ms_boxes = np.concatenate(ms_boxes)
    ms_scores = np.concatenate(ms_scores)
    bbox_pred = get_nms_result(ms_boxes, ms_scores, config, num_classes)
    post_bbox.update({'bbox': (bbox_pred, [[len(bbox_pred)]])})
    if use_flip:
        bbox = bbox_pred[:, 2:]
        bbox_flip = np.append(
            bbox_pred[:, :2], box_flip(bbox, im_shape), axis=1)
        post_bbox.update({'bbox_flip': (bbox_flip, [[len(bbox_flip)]])})
    return post_bbox


def mstest_mask_post_process(result, cfg):
    mask_list = []
    im_shape = result['im_shape'][0]
    M = cfg.FPNRoIAlign['mask_resolution']
    for k in result.keys():
        if 'mask' in k:
            masks = result[k][0]
            if len(masks.shape) != 4:
                masks = np.zeros((0, M, M))
                mask_list.append(masks)
                continue
            if 'flip' in k:
                masks = masks[:, :, :, ::-1]
            mask_list.append(masks)

    mask_pred = np.mean(mask_list, axis=0)
    return {'mask': (mask_pred, [[len(mask_pred)]])}


def mask_encode(results, resolution, thresh_binarize=0.5):
    import pycocotools.mask as mask_util
    from ppdet.utils.coco_eval import expand_boxes
    scale = (resolution + 2.0) / resolution
    bboxes = results['bbox'][0]
    masks = results['mask'][0]
    lengths = results['mask'][1][0]
    im_shapes = results['im_shape'][0]
    segms = []
    if bboxes.shape == (1, 1) or bboxes is None:
        return segms
    if len(bboxes.tolist()) == 0:
        return segms

    s = 0
    # for each sample
    for i in range(len(lengths)):
        num = lengths[i]
        im_shape = im_shapes[i]

        bbox = bboxes[s:s + num][:, 2:]
        clsid_scores = bboxes[s:s + num][:, 0:2]
        mask = masks[s:s + num]
        s += num

        im_h = int(im_shape[0])
        im_w = int(im_shape[1])
        expand_bbox = expand_boxes(bbox, scale)
        expand_bbox = expand_bbox.astype(np.int32)
        padded_mask = np.zeros(
            (resolution + 2, resolution + 2), dtype=np.float32)

        for j in range(num):
            xmin, ymin, xmax, ymax = expand_bbox[j].tolist()
            clsid, score = clsid_scores[j].tolist()
            clsid = int(clsid)
            padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :]

            w = xmax - xmin + 1
            h = ymax - ymin + 1
            w = np.maximum(w, 1)
            h = np.maximum(h, 1)
            resized_mask = cv2.resize(padded_mask, (w, h))
            resized_mask = np.array(
                resized_mask > thresh_binarize, dtype=np.uint8)
            im_mask = np.zeros((im_h, im_w), dtype=np.uint8)

            x0 = min(max(xmin, 0), im_w)
            x1 = min(max(xmax + 1, 0), im_w)
            y0 = min(max(ymin, 0), im_h)
            y1 = min(max(ymax + 1, 0), im_h)

            im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
                x0 - xmin):(x1 - xmin)]
            segm = mask_util.encode(
                np.array(
                    im_mask[:, :, np.newaxis], order='F'))[0]
            segms.append(segm)
    return segms


def corner_post_process(results, config, num_classes):
    detections = results['bbox'][0]
    keep_inds = (detections[:, 1] > -1)
    detections = detections[keep_inds]
    labels = detections[:, 0]
    scores = detections[:, 1]
    boxes = detections[:, 2:6]
    cls_boxes = get_nms_result(
        boxes, scores, config, num_classes, background_label=-1, labels=labels)
    results.update({'bbox': (cls_boxes, [[len(cls_boxes)]])})