fcos_loss.py 9.3 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

INF = 1e8
__all__ = ['FCOSLoss']


def flatten_tensor(inputs, channel_first=False):
    """
    Flatten a Tensor
    Args:
        inputs  (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C]
        channel_first(bool): if true the dimension order of
            Tensor is [N, C, H, W], otherwise is [N, H, W, C]
    Return:
        input_channel_last (Tensor): The flattened Tensor in channel_last style
    """
    if channel_first:
        input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1])
    else:
        input_channel_last = inputs
    output_channel_last = paddle.flatten(
        input_channel_last, start_axis=0, stop_axis=2)  # [N*H*W, C]
    return output_channel_last


def sigmoid_cross_entropy_with_logits_loss(inputs,
                                           label,
                                           ignore_index=-100,
                                           normalize=False):
    output = F.binary_cross_entropy_with_logits(inputs, label, reduction='none')
    mask_tensor = paddle.cast(label != ignore_index, 'float32')
    output = paddle.multiply(output, mask_tensor)
    if normalize:
        sum_valid_mask = paddle.sum(mask_tensor)
        output = output / sum_valid_mask
    return output


@register
class FCOSLoss(nn.Layer):
    """
    FCOSLoss
    Args:
        loss_alpha (float): alpha in focal loss
        loss_gamma (float): gamma in focal loss
        iou_loss_type(str): location loss type, IoU/GIoU/LINEAR_IoU
        reg_weights(float): weight for location loss
    """

    def __init__(self,
                 loss_alpha=0.25,
                 loss_gamma=2.0,
                 iou_loss_type="giou",
                 reg_weights=1.0):
        super(FCOSLoss, self).__init__()
        self.loss_alpha = loss_alpha
        self.loss_gamma = loss_gamma
        self.iou_loss_type = iou_loss_type
        self.reg_weights = reg_weights

    def __iou_loss(self, pred, targets, positive_mask, weights=None):
        """
        Calculate the loss for location prediction
        Args:
            pred          (Tensor): bounding boxes prediction
            targets       (Tensor): targets for positive samples
            positive_mask (Tensor): mask of positive samples
            weights       (Tensor): weights for each positive samples
        Return:
            loss (Tensor): location loss
        """
        plw = pred[:, 0] * positive_mask
        pth = pred[:, 1] * positive_mask
        prw = pred[:, 2] * positive_mask
        pbh = pred[:, 3] * positive_mask

        tlw = targets[:, 0] * positive_mask
        tth = targets[:, 1] * positive_mask
        trw = targets[:, 2] * positive_mask
        tbh = targets[:, 3] * positive_mask
        tlw.stop_gradient = True
        trw.stop_gradient = True
        tth.stop_gradient = True
        tbh.stop_gradient = True

        ilw = paddle.minimum(plw, tlw)
        irw = paddle.minimum(prw, trw)
        ith = paddle.minimum(pth, tth)
        ibh = paddle.minimum(pbh, tbh)

        clw = paddle.maximum(plw, tlw)
        crw = paddle.maximum(prw, trw)
        cth = paddle.maximum(pth, tth)
        cbh = paddle.maximum(pbh, tbh)

        area_predict = (plw + prw) * (pth + pbh)
        area_target = (tlw + trw) * (tth + tbh)
        area_inter = (ilw + irw) * (ith + ibh)
        ious = (area_inter + 1.0) / (
            area_predict + area_target - area_inter + 1.0)
        ious = ious * positive_mask

        if self.iou_loss_type.lower() == "linear_iou":
            loss = 1.0 - ious
        elif self.iou_loss_type.lower() == "giou":
            area_uniou = area_predict + area_target - area_inter
            area_circum = (clw + crw) * (cth + cbh) + 1e-7
            giou = ious - (area_circum - area_uniou) / area_circum
            loss = 1.0 - giou
        elif self.iou_loss_type.lower() == "iou":
            loss = 0.0 - paddle.log(ious)
        else:
            raise KeyError
        if weights is not None:
            loss = loss * weights
        return loss

    def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
                tag_bboxes, tag_center):
        """
        Calculate the loss for classification, location and centerness
        Args:
            cls_logits (list): list of Tensor, which is predicted
                score for all anchor points with shape [N, M, C]
            bboxes_reg (list): list of Tensor, which is predicted
                offsets for all anchor points with shape [N, M, 4]
            centerness (list): list of Tensor, which is predicted
                centerness for all anchor points with shape [N, M, 1]
            tag_labels (list): list of Tensor, which is category
                targets for each anchor point
            tag_bboxes (list): list of Tensor, which is bounding
                boxes targets for positive samples
            tag_center (list): list of Tensor, which is centerness
                targets for positive samples
        Return:
            loss (dict): loss composed by classification loss, bounding box
        """
        cls_logits_flatten_list = []
        bboxes_reg_flatten_list = []
        centerness_flatten_list = []
        tag_labels_flatten_list = []
        tag_bboxes_flatten_list = []
        tag_center_flatten_list = []
        num_lvl = len(cls_logits)
        for lvl in range(num_lvl):
            cls_logits_flatten_list.append(
                flatten_tensor(cls_logits[lvl], True))
            bboxes_reg_flatten_list.append(
                flatten_tensor(bboxes_reg[lvl], True))
            centerness_flatten_list.append(
                flatten_tensor(centerness[lvl], True))

            tag_labels_flatten_list.append(
                flatten_tensor(tag_labels[lvl], False))
            tag_bboxes_flatten_list.append(
                flatten_tensor(tag_bboxes[lvl], False))
            tag_center_flatten_list.append(
                flatten_tensor(tag_center[lvl], False))

        cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
        bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
        centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)

        tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
        tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
        tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
        tag_labels_flatten.stop_gradient = True
        tag_bboxes_flatten.stop_gradient = True
        tag_center_flatten.stop_gradient = True

        mask_positive_bool = tag_labels_flatten > 0
        mask_positive_bool.stop_gradient = True
        mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
        mask_positive_float.stop_gradient = True

        num_positive_fp32 = paddle.sum(mask_positive_float)
        num_positive_fp32.stop_gradient = True
        num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
        num_positive_int32 = num_positive_int32 * 0 + 1
        num_positive_int32.stop_gradient = True

        normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
        normalize_sum.stop_gradient = True

        # 1. cls_logits: sigmoid_focal_loss
        # expand onehot labels
        num_classes = cls_logits_flatten.shape[-1]
        tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1)
        tag_labels_flatten_bin = F.one_hot(
            tag_labels_flatten, num_classes=1 + num_classes)
        tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:]
        # sigmoid_focal_loss
        cls_loss = F.sigmoid_focal_loss(
            cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32

        # 2. bboxes_reg: giou_loss
        mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
        tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
        reg_loss = self.__iou_loss(
            bboxes_reg_flatten,
            tag_bboxes_flatten,
            mask_positive_float,
            weights=tag_center_flatten)
        reg_loss = reg_loss * mask_positive_float / normalize_sum

        # 3. centerness: sigmoid_cross_entropy_with_logits_loss
        centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
        ctn_loss = sigmoid_cross_entropy_with_logits_loss(centerness_flatten,
                                                          tag_center_flatten)
        ctn_loss = ctn_loss * mask_positive_float / num_positive_fp32

        loss_all = {
            "loss_centerness": paddle.sum(ctn_loss),
            "loss_cls": paddle.sum(cls_loss),
            "loss_box": paddle.sum(reg_loss)
        }
        return loss_all