widerface_utils.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import numpy as np
from collections import OrderedDict

import paddle

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['face_eval_run', 'lmk2out']


def face_eval_run(model,
                  image_dir,
                  gt_file,
                  pred_dir='output/pred',
                  eval_mode='widerface',
                  multi_scale=False):
    # load ground truth files
    with open(gt_file, 'r') as f:
        gt_lines = f.readlines()
    imid2path = []
    pos_gt = 0
    while pos_gt < len(gt_lines):
        name_gt = gt_lines[pos_gt].strip('\n\t').split()[0]
        imid2path.append(name_gt)
        pos_gt += 1
        n_gt = int(gt_lines[pos_gt].strip('\n\t').split()[0])
        pos_gt += 1 + n_gt
    logger.info('The ground truth file load {} images'.format(len(imid2path)))

    dets_dist = OrderedDict()
    for iter_id, im_path in enumerate(imid2path):
        image_path = os.path.join(image_dir, im_path)
        if eval_mode == 'fddb':
            image_path += '.jpg'
        assert os.path.exists(image_path)
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        if multi_scale:
            shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
            det0 = detect_face(model, image, shrink)
            det1 = flip_test(model, image, shrink)
            [det2, det3] = multi_scale_test(model, image, max_shrink)
            det4 = multi_scale_test_pyramid(model, image, max_shrink)
            det = np.row_stack((det0, det1, det2, det3, det4))
            dets = bbox_vote(det)
        else:
            dets = detect_face(model, image, 1)
        if eval_mode == 'widerface':
            save_widerface_bboxes(image_path, dets, pred_dir)
        else:
            dets_dist[im_path] = dets
        if iter_id % 100 == 0:
            logger.info('Test iter {}'.format(iter_id))
    if eval_mode == 'fddb':
        save_fddb_bboxes(dets_dist, pred_dir)
    logger.info("Finish evaluation.")


def detect_face(model, image, shrink):
    image_shape = [image.shape[0], image.shape[1]]
    if shrink != 1:
        h, w = int(image_shape[0] * shrink), int(image_shape[1] * shrink)
        image = cv2.resize(image, (w, h))
        image_shape = [h, w]

    img = face_img_process(image)
    image_shape = np.asarray([image_shape])
    scale_factor = np.asarray([[shrink, shrink]])
    data = {
        "image": paddle.to_tensor(
            img, dtype='float32'),
        "im_shape": paddle.to_tensor(
            image_shape, dtype='float32'),
        "scale_factor": paddle.to_tensor(
            scale_factor, dtype='float32')
    }
    model.eval()
    detection = model(data)
    detection = detection['bbox'].numpy()
    # layout: xmin, ymin, xmax. ymax, score
    if np.prod(detection.shape) == 1:
        logger.info("No face detected")
        return np.array([[0, 0, 0, 0, 0]])
    det_conf = detection[:, 1]
    det_xmin = detection[:, 2]
    det_ymin = detection[:, 3]
    det_xmax = detection[:, 4]
    det_ymax = detection[:, 5]

    det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
    return det


def flip_test(model, image, shrink):
    img = cv2.flip(image, 1)
    det_f = detect_face(model, img, shrink)
    det_t = np.zeros(det_f.shape)
    img_width = image.shape[1]
    det_t[:, 0] = img_width - det_f[:, 2]
    det_t[:, 1] = det_f[:, 1]
    det_t[:, 2] = img_width - det_f[:, 0]
    det_t[:, 3] = det_f[:, 3]
    det_t[:, 4] = det_f[:, 4]
    return det_t


def multi_scale_test(model, image, max_shrink):
    # Shrink detecting is only used to detect big faces
    st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
    det_s = detect_face(model, image, st)
    index = np.where(
        np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
        > 30)[0]
    det_s = det_s[index, :]
    # Enlarge one times
    bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
    det_b = detect_face(model, image, bt)

    # Enlarge small image x times for small faces
    if max_shrink > 2:
        bt *= 2
        while bt < max_shrink:
            det_b = np.row_stack((det_b, detect_face(model, image, bt)))
            bt *= 2
        det_b = np.row_stack((det_b, detect_face(model, image, max_shrink)))

    # Enlarged images are only used to detect small faces.
    if bt > 1:
        index = np.where(
            np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
        det_b = det_b[index, :]
    # Shrinked images are only used to detect big faces.
    else:
        index = np.where(
            np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
        det_b = det_b[index, :]
    return det_s, det_b


def multi_scale_test_pyramid(model, image, max_shrink):
    # Use image pyramids to detect faces
    det_b = detect_face(model, image, 0.25)
    index = np.where(
        np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
        > 30)[0]
    det_b = det_b[index, :]

    st = [0.75, 1.25, 1.5, 1.75]
    for i in range(len(st)):
        if st[i] <= max_shrink:
            det_temp = detect_face(model, image, st[i])
            # Enlarged images are only used to detect small faces.
            if st[i] > 1:
                index = np.where(
                    np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
                det_temp = det_temp[index, :]
            # Shrinked images are only used to detect big faces.
            else:
                index = np.where(
                    np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
                det_temp = det_temp[index, :]
            det_b = np.row_stack((det_b, det_temp))
    return det_b


def to_chw(image):
    """
    Transpose image from HWC to CHW.
    Args:
        image (np.array): an image with HWC layout.
    """
    # HWC to CHW
    if len(image.shape) == 3:
        image = np.swapaxes(image, 1, 2)
        image = np.swapaxes(image, 1, 0)
    return image


def face_img_process(image,
                     mean=[104., 117., 123.],
                     std=[127.502231, 127.502231, 127.502231]):
    img = np.array(image)
    img = to_chw(img)
    img = img.astype('float32')
    img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
    img /= np.array(std)[:, np.newaxis, np.newaxis].astype('float32')
    img = [img]
    img = np.array(img)
    return img


def get_shrink(height, width):
    """
    Args:
        height (int): image height.
        width (int): image width.
    """
    # avoid out of memory
    max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
    max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5

    def get_round(x, loc):
        str_x = str(x)
        if '.' in str_x:
            str_before, str_after = str_x.split('.')
            len_after = len(str_after)
            if len_after >= 3:
                str_final = str_before + '.' + str_after[0:loc]
                return float(str_final)
            else:
                return x

    max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
    if max_shrink >= 1.5 and max_shrink < 2:
        max_shrink = max_shrink - 0.1
    elif max_shrink >= 2 and max_shrink < 3:
        max_shrink = max_shrink - 0.2
    elif max_shrink >= 3 and max_shrink < 4:
        max_shrink = max_shrink - 0.3
    elif max_shrink >= 4 and max_shrink < 5:
        max_shrink = max_shrink - 0.4
    elif max_shrink >= 5:
        max_shrink = max_shrink - 0.5
    elif max_shrink <= 0.1:
        max_shrink = 0.1

    shrink = max_shrink if max_shrink < 1 else 1
    return shrink, max_shrink


def bbox_vote(det):
    order = det[:, 4].ravel().argsort()[::-1]
    det = det[order, :]
    if det.shape[0] == 0:
        dets = np.array([[10, 10, 20, 20, 0.002]])
        det = np.empty(shape=[0, 5])
    while det.shape[0] > 0:
        # IOU
        area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
        xx1 = np.maximum(det[0, 0], det[:, 0])
        yy1 = np.maximum(det[0, 1], det[:, 1])
        xx2 = np.minimum(det[0, 2], det[:, 2])
        yy2 = np.minimum(det[0, 3], det[:, 3])
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        o = inter / (area[0] + area[:] - inter)

        # nms
        merge_index = np.where(o >= 0.3)[0]
        det_accu = det[merge_index, :]
        det = np.delete(det, merge_index, 0)
        if merge_index.shape[0] <= 1:
            if det.shape[0] == 0:
                try:
                    dets = np.row_stack((dets, det_accu))
                except:
                    dets = det_accu
            continue
        det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
        max_score = np.max(det_accu[:, 4])
        det_accu_sum = np.zeros((1, 5))
        det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
                                      axis=0) / np.sum(det_accu[:, -1:])
        det_accu_sum[:, 4] = max_score
        try:
            dets = np.row_stack((dets, det_accu_sum))
        except:
            dets = det_accu_sum
    dets = dets[0:750, :]
    keep_index = np.where(dets[:, 4] >= 0.01)[0]
    dets = dets[keep_index, :]
    return dets


def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
    image_name = image_path.split('/')[-1]
    image_class = image_path.split('/')[-2]
    odir = os.path.join(output_dir, image_class)
    if not os.path.exists(odir):
        os.makedirs(odir)

    ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
    f = open(ofname, 'w')
    f.write('{:s}\n'.format(image_class + '/' + image_name))
    f.write('{:d}\n'.format(bboxes_scores.shape[0]))
    for box_score in bboxes_scores:
        xmin, ymin, xmax, ymax, score = box_score
        f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
            xmax - xmin + 1), (ymax - ymin + 1), score))
    f.close()
    logger.info("The predicted result is saved as {}".format(ofname))


def save_fddb_bboxes(bboxes_scores,
                     output_dir,
                     output_fname='pred_fddb_res.txt'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    predict_file = os.path.join(output_dir, output_fname)
    f = open(predict_file, 'w')
    for image_path, dets in bboxes_scores.iteritems():
        f.write('{:s}\n'.format(image_path))
        f.write('{:d}\n'.format(dets.shape[0]))
        for box_score in dets:
            xmin, ymin, xmax, ymax, score = box_score
            width, height = xmax - xmin, ymax - ymin
            f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
                    .format(xmin, ymin, width, height, score))
    logger.info("The predicted result is saved as {}".format(predict_file))
    return predict_file


def lmk2out(results, is_bbox_normalized=False):
    """
    Args:
        results: request a dict, should include: `landmark`, `im_id`,
                 if is_bbox_normalized=True, also need `im_shape`.
        is_bbox_normalized: whether or not landmark is normalized.
    """
    xywh_res = []
    for t in results:
        bboxes = t['bbox'][0]
        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0]).flatten()
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        face_index = t['face_index'][0]
        prior_box = t['prior_boxes'][0]
        predict_lmk = t['landmark'][0]
        prior = np.reshape(prior_box, (-1, 4))
        predictlmk = np.reshape(predict_lmk, (-1, 10))

        k = 0
        for a in range(len(lengths)):
            num = lengths[a]
            im_id = int(im_ids[a])
            for i in range(num):
                score = bboxes[k][1]
                theindex = face_index[i][0]
                me_prior = prior[theindex, :]
                lmk_pred = predictlmk[theindex, :]
                prior_w = me_prior[2] - me_prior[0]
                prior_h = me_prior[3] - me_prior[1]
                prior_w_center = (me_prior[2] + me_prior[0]) / 2
                prior_h_center = (me_prior[3] + me_prior[1]) / 2
                lmk_decode = np.zeros((10))
                for j in [0, 2, 4, 6, 8]:
                    lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
                for j in [1, 3, 5, 7, 9]:
                    lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
                im_shape = t['im_shape'][0][a].tolist()
                image_h, image_w = int(im_shape[0]), int(im_shape[1])
                if is_bbox_normalized:
                    lmk_decode = lmk_decode * np.array([
                        image_w, image_h, image_w, image_h, image_w, image_h,
                        image_w, image_h, image_w, image_h
                    ])
                lmk_res = {
                    'image_id': im_id,
                    'landmark': lmk_decode,
                    'score': score,
                }
                xywh_res.append(lmk_res)
                k += 1
    return xywh_res