autoaugment_utils.py 64.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference: 
#   https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/autoaugment_utils.py
"""AutoAugment util file."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import math
from PIL import Image, ImageEnhance
import numpy as np
import os
import sys
import cv2
from copy import deepcopy

# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.

# Represents an invalid bounding box that is used for checking for padding
# lists of bounding box coordinates for a few augmentation operations
_INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]


def policy_v0():
    """Autoaugment policy that was used in AutoAugment Detection Paper."""
    # Each tuple is an augmentation operation of the form
    # (operation, probability, magnitude). Each element in policy is a
    # sub-policy that will be applied sequentially on the image.
    policy = [
        [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
        [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
        [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
        [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
    ]
    return policy


def policy_v1():
    """Autoaugment policy that was used in AutoAugment Detection Paper."""
    # Each tuple is an augmentation operation of the form
    # (operation, probability, magnitude). Each element in policy is a
    # sub-policy that will be applied sequentially on the image.
    policy = [
        [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
        [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
        [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
        [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
        [('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
        [('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
        [('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
        [('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
        [('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)],  # , 
        [('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
        [('Color', 1.0, 6), ('Equalize', 1.0, 2)],
        [('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
        [('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
        [('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
        [('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
        [('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
        [('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
        [('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
        [('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
    ]
    return policy


def policy_vtest():
    """Autoaugment test policy for debugging."""
    # Each tuple is an augmentation operation of the form
    # (operation, probability, magnitude). Each element in policy is a
    # sub-policy that will be applied sequentially on the image.
    policy = [[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)], ]
    return policy


def policy_v2():
    """Additional policy that performs well on object detection."""
    # Each tuple is an augmentation operation of the form
    # (operation, probability, magnitude). Each element in policy is a
    # sub-policy that will be applied sequentially on the image.
    policy = [
        [('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
        [('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
         ('Rotate_BBox', 0.8, 10)],
        [('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
        [('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
         ('Brightness', 0.0, 10)],
        [('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
         ('AutoContrast', 0.6, 0)],
        [('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
        [('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
         ('Solarize', 0.0, 10)],
        [('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
         ('Rotate_BBox', 0.8, 8)],
        [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
        [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6),
         ('Rotate_BBox', 0.6, 6)],
        [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)],
        [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6),
         ('ShearY_BBox', 0.6, 8)],
        [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
         ('Brightness', 0.2, 2)],
        [('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
         ('SolarizeAdd', 0.2, 10)],
        [('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
    ]
    return policy


def policy_v3():
    """"Additional policy that performs well on object detection."""
    # Each tuple is an augmentation operation of the form
    # (operation, probability, magnitude). Each element in policy is a
    # sub-policy that will be applied sequentially on the image.
    policy = [
        [('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
        [('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
        [('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
        [('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
        [('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
        [('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
        [('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
        [('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
        [('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
        [('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
        [('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
        [('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
        [('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
        [('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
        [('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
    ]
    return policy


def _equal(val1, val2, eps=1e-8):
    return abs(val1 - val2) <= eps


def blend(image1, image2, factor):
    """Blend image1 and image2 using 'factor'.

    Factor can be above 0.0.    A value of 0.0 means only image1 is used.
    A value of 1.0 means only image2 is used.    A value between 0.0 and
    1.0 means we linearly interpolate the pixel values between the two
    images.    A value greater than 1.0 "extrapolates" the difference
    between the two pixel values, and we clip the results to values
    between 0 and 255.

    Args:
        image1: An image Tensor of type uint8.
        image2: An image Tensor of type uint8.
        factor: A floating point value above 0.0.

    Returns:
        A blended image Tensor of type uint8.
    """
    if factor == 0.0:
        return image1
    if factor == 1.0:
        return image2

    image1 = image1.astype(np.float32)
    image2 = image2.astype(np.float32)

    difference = image2 - image1
    scaled = factor * difference

    # Do addition in float.
    temp = image1 + scaled

    # Interpolate
    if factor > 0.0 and factor < 1.0:
        # Interpolation means we always stay within 0 and 255.
        return temp.astype(np.uint8)

    # Extrapolate:
    #
    # We need to clip and then cast.
    return np.clip(temp, a_min=0, a_max=255).astype(np.uint8)


def cutout(image, pad_size, replace=0):
    """Apply cutout (https://arxiv.org/abs/1708.04552) to image.

    This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
    a random location within `img`. The pixel values filled in will be of the
    value `replace`. The located where the mask will be applied is randomly
    chosen uniformly over the whole image.

    Args:
        image: An image Tensor of type uint8.
        pad_size: Specifies how big the zero mask that will be generated is that
            is applied to the image. The mask will be of size
            (2*pad_size x 2*pad_size).
        replace: What pixel value to fill in the image in the area that has
            the cutout mask applied to it.

    Returns:
        An image Tensor that is of type uint8.
    Example:
        img = cv2.imread( "/home/vis/gry/train/img_data/test.jpg", cv2.COLOR_BGR2RGB )
        new_img = cutout(img, pad_size=50, replace=0)
    """
    image_height, image_width = image.shape[0], image.shape[1]

    cutout_center_height = np.random.randint(low=0, high=image_height)
    cutout_center_width = np.random.randint(low=0, high=image_width)

    lower_pad = np.maximum(0, cutout_center_height - pad_size)
    upper_pad = np.maximum(0, image_height - cutout_center_height - pad_size)
    left_pad = np.maximum(0, cutout_center_width - pad_size)
    right_pad = np.maximum(0, image_width - cutout_center_width - pad_size)

    cutout_shape = [
        image_height - (lower_pad + upper_pad),
        image_width - (left_pad + right_pad)
    ]
    padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
    mask = np.pad(np.zeros(
        cutout_shape, dtype=image.dtype),
                  padding_dims,
                  'constant',
                  constant_values=1)
    mask = np.expand_dims(mask, -1)
    mask = np.tile(mask, [1, 1, 3])
    image = np.where(
        np.equal(mask, 0),
        np.ones_like(
            image, dtype=image.dtype) * replace,
        image)
    return image.astype(np.uint8)


def solarize(image, threshold=128):
    # For each pixel in the image, select the pixel
    # if the value is less than the threshold.
    # Otherwise, subtract 255 from the pixel.
    return np.where(image < threshold, image, 255 - image)


def solarize_add(image, addition=0, threshold=128):
    # For each pixel in the image less than threshold
    # we add 'addition' amount to it and then clip the
    # pixel value to be between 0 and 255. The value
    # of 'addition' is between -128 and 128.
    added_image = image.astype(np.int64) + addition
    added_image = np.clip(added_image, a_min=0, a_max=255).astype(np.uint8)
    return np.where(image < threshold, added_image, image)


def color(image, factor):
    """use cv2 to deal"""
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    degenerate = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
    return blend(degenerate, image, factor)


# refer to https://github.com/4uiiurz1/pytorch-auto-augment/blob/024b2eac4140c38df8342f09998e307234cafc80/auto_augment.py#L197
def contrast(img, factor):
    img = ImageEnhance.Contrast(Image.fromarray(img)).enhance(factor)
    return np.array(img)


def brightness(image, factor):
    """Equivalent of PIL Brightness."""
    degenerate = np.zeros_like(image)
    return blend(degenerate, image, factor)


def posterize(image, bits):
    """Equivalent of PIL Posterize."""
    shift = 8 - bits
    return np.left_shift(np.right_shift(image, shift), shift)


def rotate(image, degrees, replace):
    """Rotates the image by degrees either clockwise or counterclockwise.

    Args:
        image: An image Tensor of type uint8.
        degrees: Float, a scalar angle in degrees to rotate all images by. If
            degrees is positive the image will be rotated clockwise otherwise it will
            be rotated counterclockwise.
        replace: A one or three value 1D tensor to fill empty pixels caused by
            the rotate operation.

    Returns:
        The rotated version of image.
    """
    image = wrap(image)
    image = Image.fromarray(image)
    image = image.rotate(degrees)
    image = np.array(image, dtype=np.uint8)
    return unwrap(image, replace)


def random_shift_bbox(image,
                      bbox,
                      pixel_scaling,
                      replace,
                      new_min_bbox_coords=None):
    """Move the bbox and the image content to a slightly new random location.

    Args:
        image: 3D uint8 Tensor.
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
            The potential values for the new min corner of the bbox will be between
            [old_min - pixel_scaling * bbox_height/2,
             old_min - pixel_scaling * bbox_height/2].
        pixel_scaling: A float between 0 and 1 that specifies the pixel range
            that the new bbox location will be sampled from.
        replace: A one or three value 1D tensor to fill empty pixels.
        new_min_bbox_coords: If not None, then this is a tuple that specifies the
            (min_y, min_x) coordinates of the new bbox. Normally this is randomly
            specified, but this allows it to be manually set. The coordinates are
            the absolute coordinates between 0 and image height/width and are int32.

    Returns:
        The new image that will have the shifted bbox location in it along with
        the new bbox that contains the new coordinates.
    """
    # Obtains image height and width and create helper clip functions.
    image_height, image_width = image.shape[0], image.shape[1]
    image_height = float(image_height)
    image_width = float(image_width)

    def clip_y(val):
        return np.clip(val, a_min=0, a_max=image_height - 1).astype(np.int32)

    def clip_x(val):
        return np.clip(val, a_min=0, a_max=image_width - 1).astype(np.int32)

    # Convert bbox to pixel coordinates.
    min_y = int(image_height * bbox[0])
    min_x = int(image_width * bbox[1])
    max_y = clip_y(image_height * bbox[2])
    max_x = clip_x(image_width * bbox[3])

    bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
    image_height = int(image_height)
    image_width = int(image_width)

    # Select the new min/max bbox ranges that are used for sampling the
    # new min x/y coordinates of the shifted bbox.
    minval_y = clip_y(min_y - np.int32(pixel_scaling * float(bbox_height) /
                                       2.0))
    maxval_y = clip_y(min_y + np.int32(pixel_scaling * float(bbox_height) /
                                       2.0))
    minval_x = clip_x(min_x - np.int32(pixel_scaling * float(bbox_width) / 2.0))
    maxval_x = clip_x(min_x + np.int32(pixel_scaling * float(bbox_width) / 2.0))

    # Sample and calculate the new unclipped min/max coordinates of the new bbox.
    if new_min_bbox_coords is None:
        unclipped_new_min_y = np.random.randint(
            low=minval_y, high=maxval_y, dtype=np.int32)
        unclipped_new_min_x = np.random.randint(
            low=minval_x, high=maxval_x, dtype=np.int32)
    else:
        unclipped_new_min_y, unclipped_new_min_x = (
            clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
    unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
    unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1

    # Determine if any of the new bbox was shifted outside the current image.
    # This is used for determining if any of the original bbox content should be
    # discarded.
    new_min_y, new_min_x, new_max_y, new_max_x = (
        clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
        clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
    shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
    shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
    shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
    shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)

    # Create the new bbox tensor by converting pixel integer values to floats.
    new_bbox = np.stack([
        float(new_min_y) / float(image_height), float(new_min_x) /
        float(image_width), float(new_max_y) / float(image_height),
        float(new_max_x) / float(image_width)
    ])

    # Copy the contents in the bbox and fill the old bbox location
    # with gray (128).
    bbox_content = image[shifted_min_y:shifted_max_y + 1, shifted_min_x:
                         shifted_max_x + 1, :]

    def mask_and_add_image(min_y_, min_x_, max_y_, max_x_, mask, content_tensor,
                           image_):
        """Applies mask to bbox region in image then adds content_tensor to it."""
        mask = np.pad(mask, [[min_y_, (image_height - 1) - max_y_],
                             [min_x_, (image_width - 1) - max_x_], [0, 0]],
                      'constant',
                      constant_values=1)

        content_tensor = np.pad(content_tensor,
                                [[min_y_, (image_height - 1) - max_y_],
                                 [min_x_, (image_width - 1) - max_x_], [0, 0]],
                                'constant',
                                constant_values=0)
        return image_ * mask + content_tensor

    # Zero out original bbox location.
    mask = np.zeros_like(image)[min_y:max_y + 1, min_x:max_x + 1, :]
    grey_tensor = np.zeros_like(mask) + replace[0]
    image = mask_and_add_image(min_y, min_x, max_y, max_x, mask, grey_tensor,
                               image)

    # Fill in bbox content to new bbox location.
    mask = np.zeros_like(bbox_content)
    image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x, mask,
                               bbox_content, image)

    return image.astype(np.uint8), new_bbox


def _clip_bbox(min_y, min_x, max_y, max_x):
    """Clip bounding box coordinates between 0 and 1.

    Args:
        min_y: Normalized bbox coordinate of type float between 0 and 1.
        min_x: Normalized bbox coordinate of type float between 0 and 1.
        max_y: Normalized bbox coordinate of type float between 0 and 1.
        max_x: Normalized bbox coordinate of type float between 0 and 1.

    Returns:
        Clipped coordinate values between 0 and 1.
    """
    min_y = np.clip(min_y, a_min=0, a_max=1.0)
    min_x = np.clip(min_x, a_min=0, a_max=1.0)
    max_y = np.clip(max_y, a_min=0, a_max=1.0)
    max_x = np.clip(max_x, a_min=0, a_max=1.0)
    return min_y, min_x, max_y, max_x


def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
    """Adjusts bbox coordinates to make sure the area is > 0.

    Args:
        min_y: Normalized bbox coordinate of type float between 0 and 1.
        min_x: Normalized bbox coordinate of type float between 0 and 1.
        max_y: Normalized bbox coordinate of type float between 0 and 1.
        max_x: Normalized bbox coordinate of type float between 0 and 1.
        delta: Float, this is used to create a gap of size 2 * delta between
            bbox min/max coordinates that are the same on the boundary.
            This prevents the bbox from having an area of zero.

    Returns:
        Tuple of new bbox coordinates between 0 and 1 that will now have a
        guaranteed area > 0.
    """
    height = max_y - min_y
    width = max_x - min_x

    def _adjust_bbox_boundaries(min_coord, max_coord):
        # Make sure max is never 0 and min is never 1.
        max_coord = np.maximum(max_coord, 0.0 + delta)
        min_coord = np.minimum(min_coord, 1.0 - delta)
        return min_coord, max_coord

    if _equal(height, 0):
        min_y, max_y = _adjust_bbox_boundaries(min_y, max_y)

    if _equal(width, 0):
        min_x, max_x = _adjust_bbox_boundaries(min_x, max_x)

    return min_y, min_x, max_y, max_x


def _scale_bbox_only_op_probability(prob):
    """Reduce the probability of the bbox-only operation.

    Probability is reduced so that we do not distort the content of too many
    bounding boxes that are close to each other. The value of 3.0 was a chosen
    hyper parameter when designing the autoaugment algorithm that we found
    empirically to work well.

    Args:
        prob: Float that is the probability of applying the bbox-only operation.

    Returns:
        Reduced probability.
    """
    return prob / 3.0


def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
    """Applies augmentation_func to the subsection of image indicated by bbox.

    Args:
        image: 3D uint8 Tensor.
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        augmentation_func: Augmentation function that will be applied to the
            subsection of image.
        *args: Additional parameters that will be passed into augmentation_func
            when it is called.

    Returns:
        A modified version of image, where the bbox location in the image will
        have `ugmentation_func applied to it.
    """
    image_height = image.shape[0]
    image_width = image.shape[1]

    min_y = int(image_height * bbox[0])
    min_x = int(image_width * bbox[1])
    max_y = int(image_height * bbox[2])
    max_x = int(image_width * bbox[3])

    # Clip to be sure the max values do not fall out of range.
    max_y = np.minimum(max_y, image_height - 1)
    max_x = np.minimum(max_x, image_width - 1)

    # Get the sub-tensor that is the image within the bounding box region.
    bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]

    # Apply the augmentation function to the bbox portion of the image.
    augmented_bbox_content = augmentation_func(bbox_content, *args)

    # Pad the augmented_bbox_content and the mask to match the shape of original
    # image.
    augmented_bbox_content = np.pad(
        augmented_bbox_content, [[min_y, (image_height - 1) - max_y],
                                 [min_x, (image_width - 1) - max_x], [0, 0]],
        'constant',
        constant_values=1)

    # Create a mask that will be used to zero out a part of the original image.
    mask_tensor = np.zeros_like(bbox_content)

    mask_tensor = np.pad(mask_tensor,
                         [[min_y, (image_height - 1) - max_y],
                          [min_x, (image_width - 1) - max_x], [0, 0]],
                         'constant',
                         constant_values=1)
    # Replace the old bbox content with the new augmented content.
    image = image * mask_tensor + augmented_bbox_content
    return image.astype(np.uint8)


def _concat_bbox(bbox, bboxes):
    """Helper function that concates bbox to bboxes along the first dimension."""

    # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
    # we discard bboxes and start the bboxes Tensor with the current bbox.
    bboxes_sum_check = np.sum(bboxes)
    bbox = np.expand_dims(bbox, 0)
    # This check will be true when it is an _INVALID_BOX
    if _equal(bboxes_sum_check, -4):
        bboxes = bbox
    else:
        bboxes = np.concatenate([bboxes, bbox], 0)
    return bboxes


def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
                                     augmentation_func, func_changes_bbox,
                                     *args):
    """Applies _apply_bbox_augmentation with probability prob.

    Args:
        image: 3D uint8 Tensor.
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
            have been altered by aug_func. These will only be changed when
            func_changes_bbox is set to true. Each bbox has 4 elements
            (min_y, min_x, max_y, max_x) of type float that are the normalized
            bbox coordinates between 0 and 1.
        prob: Float that is the probability of applying _apply_bbox_augmentation.
        augmentation_func: Augmentation function that will be applied to the
            subsection of image.
        func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
            to image.
        *args: Additional parameters that will be passed into augmentation_func
            when it is called.

    Returns:
        A tuple. Fist element is a modified version of image, where the bbox
        location in the image will have augmentation_func applied to it if it is
        chosen to be called with probability `prob`. The second element is a
        Tensor of Tensors of length 4 that will contain the altered bbox after
        applying augmentation_func.
    """
    should_apply_op = (np.random.rand() + prob >= 1)
    if func_changes_bbox:
        if should_apply_op:
            augmented_image, bbox = augmentation_func(image, bbox, *args)
        else:
            augmented_image, bbox = (image, bbox)
    else:
        if should_apply_op:
            augmented_image = _apply_bbox_augmentation(image, bbox,
                                                       augmentation_func, *args)
        else:
            augmented_image = image
    new_bboxes = _concat_bbox(bbox, new_bboxes)
    return augmented_image.astype(np.uint8), new_bboxes


def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
                                   func_changes_bbox, *args):
    """Applies aug_func to the image for each bbox in bboxes.

    Args:
        image: 3D uint8 Tensor.
        bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
            has 4 elements (min_y, min_x, max_y, max_x) of type float.
        prob: Float that is the probability of applying aug_func to a specific
            bounding box within the image.
        aug_func: Augmentation function that will be applied to the
            subsections of image indicated by the bbox values in bboxes.
        func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
            to image.
        *args: Additional parameters that will be passed into augmentation_func
            when it is called.

    Returns:
        A modified version of image, where each bbox location in the image will
        have augmentation_func applied to it if it is chosen to be called with
        probability prob independently across all bboxes. Also the final
        bboxes are returned that will be unchanged if func_changes_bbox is set to
        false and if true, the new altered ones will be returned.
    """
    # Will keep track of the new altered bboxes after aug_func is repeatedly
    # applied. The -1 values are a dummy value and this first Tensor will be
    # removed upon appending the first real bbox.
    new_bboxes = np.array(_INVALID_BOX)

    # If the bboxes are empty, then just give it _INVALID_BOX. The result
    # will be thrown away.
    bboxes = np.array((_INVALID_BOX)) if bboxes.size == 0 else bboxes

    assert bboxes.shape[1] == 4, "bboxes.shape[1] must be 4!!!!"

    # pylint:disable=g-long-lambda
    # pylint:disable=line-too-long
    wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
    # pylint:enable=g-long-lambda
    # pylint:enable=line-too-long

    # Setup the while_loop.
    num_bboxes = bboxes.shape[0]  # We loop until we go over all bboxes.
    idx = 0  # Counter for the while loop.

    # Conditional function when to end the loop once we go over all bboxes
    # images_and_bboxes contain (_image, _new_bboxes)
    def cond(_idx, _images_and_bboxes):
        return _idx < num_bboxes

    # Shuffle the bboxes so that the augmentation order is not deterministic if
    # we are not changing the bboxes with aug_func.
    # if not func_changes_bbox:
    #     print(bboxes)
    #     loop_bboxes = np.take(bboxes,np.random.permutation(bboxes.shape[0]),axis=0)
    #     print(loop_bboxes)
    # else:
    #     loop_bboxes = bboxes
    # we can not shuffle the bbox because it does not contain class information here
    loop_bboxes = deepcopy(bboxes)

    # Main function of while_loop where we repeatedly apply augmentation on the
    # bboxes in the image.
    # pylint:disable=g-long-lambda
    body = lambda _idx, _images_and_bboxes: [
            _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
                                         loop_bboxes[_idx],
                                         _images_and_bboxes[1])]
    while (cond(idx, (image, new_bboxes))):
        idx, (image, new_bboxes) = body(idx, (image, new_bboxes))

    # Either return the altered bboxes or the original ones depending on if
    # we altered them in anyway.
    if func_changes_bbox:
        final_bboxes = new_bboxes
    else:
        final_bboxes = bboxes
    return image, final_bboxes


def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
                                           func_changes_bbox, *args):
    """Checks to be sure num bboxes > 0 before calling inner function."""
    num_bboxes = len(bboxes)
    new_image = deepcopy(image)
    new_bboxes = deepcopy(bboxes)
    if num_bboxes != 0:
        new_image, new_bboxes = _apply_multi_bbox_augmentation(
            new_image, new_bboxes, prob, aug_func, func_changes_bbox, *args)
    return new_image, new_bboxes


def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
    """Apply rotate to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)


def shear_x_only_bboxes(image, bboxes, prob, level, replace):
    """Apply shear_x to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, shear_x, func_changes_bbox, level, replace)


def shear_y_only_bboxes(image, bboxes, prob, level, replace):
    """Apply shear_y to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, shear_y, func_changes_bbox, level, replace)


def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
    """Apply translate_x to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)


def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
    """Apply translate_y to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)


def flip_only_bboxes(image, bboxes, prob):
    """Apply flip_lr to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
                                                  np.fliplr, func_changes_bbox)


def solarize_only_bboxes(image, bboxes, prob, threshold):
    """Apply solarize to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, solarize,
                                                  func_changes_bbox, threshold)


def equalize_only_bboxes(image, bboxes, prob):
    """Apply equalize to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, equalize,
                                                  func_changes_bbox)


def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
    """Apply cutout to each bbox in the image with probability prob."""
    func_changes_bbox = False
    prob = _scale_bbox_only_op_probability(prob)
    return _apply_multi_bbox_augmentation_wrapper(
        image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)


def _rotate_bbox(bbox, image_height, image_width, degrees):
    """Rotates the bbox coordinated by degrees.

    Args:
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        image_height: Int, height of the image.
        image_width: Int, height of the image.
        degrees: Float, a scalar angle in degrees to rotate all images by. If
            degrees is positive the image will be rotated clockwise otherwise it will
            be rotated counterclockwise.

    Returns:
        A tensor of the same shape as bbox, but now with the rotated coordinates.
    """
    image_height, image_width = (float(image_height), float(image_width))

    # Convert from degrees to radians.
    degrees_to_radians = math.pi / 180.0
    radians = degrees * degrees_to_radians

    # Translate the bbox to the center of the image and turn the normalized 0-1
    # coordinates to absolute pixel locations.
    # Y coordinates are made negative as the y axis of images goes down with
    # increasing pixel values, so we negate to make sure x axis and y axis points
    # are in the traditionally positive direction.
    min_y = -int(image_height * (bbox[0] - 0.5))
    min_x = int(image_width * (bbox[1] - 0.5))
    max_y = -int(image_height * (bbox[2] - 0.5))
    max_x = int(image_width * (bbox[3] - 0.5))
    coordinates = np.stack([[min_y, min_x], [min_y, max_x], [max_y, min_x],
                            [max_y, max_x]]).astype(np.float32)
    # Rotate the coordinates according to the rotation matrix clockwise if
    # radians is positive, else negative
    rotation_matrix = np.stack([[math.cos(radians), math.sin(radians)],
                                [-math.sin(radians), math.cos(radians)]])
    new_coords = np.matmul(rotation_matrix,
                           np.transpose(coordinates)).astype(np.int32)

    # Find min/max values and convert them back to normalized 0-1 floats.
    min_y = -(float(np.max(new_coords[0, :])) / image_height - 0.5)
    min_x = float(np.min(new_coords[1, :])) / image_width + 0.5
    max_y = -(float(np.min(new_coords[0, :])) / image_height - 0.5)
    max_x = float(np.max(new_coords[1, :])) / image_width + 0.5

    # Clip the bboxes to be sure the fall between [0, 1].
    min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
    min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
    return np.stack([min_y, min_x, max_y, max_x])


def rotate_with_bboxes(image, bboxes, degrees, replace):
    # Rotate the image.
    image = rotate(image, degrees, replace)

    # Convert bbox coordinates to pixel values.
    image_height, image_width = image.shape[:2]
    # pylint:disable=g-long-lambda
    wrapped_rotate_bbox = lambda bbox: _rotate_bbox(bbox, image_height, image_width, degrees)
    # pylint:enable=g-long-lambda
    new_bboxes = np.zeros_like(bboxes)
    for idx in range(len(bboxes)):
        new_bboxes[idx] = wrapped_rotate_bbox(bboxes[idx])
    return image, new_bboxes


def translate_x(image, pixels, replace):
    """Equivalent of PIL Translate in X dimension."""
    image = Image.fromarray(wrap(image))
    image = image.transform(image.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0))
    return unwrap(np.array(image), replace)


def translate_y(image, pixels, replace):
    """Equivalent of PIL Translate in Y dimension."""
    image = Image.fromarray(wrap(image))
    image = image.transform(image.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels))
    return unwrap(np.array(image), replace)


def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
    """Shifts the bbox coordinates by pixels.

    Args:
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        image_height: Int, height of the image.
        image_width: Int, width of the image.
        pixels: An int. How many pixels to shift the bbox.
        shift_horizontal: Boolean. If true then shift in X dimension else shift in
            Y dimension.

    Returns:
        A tensor of the same shape as bbox, but now with the shifted coordinates.
    """
    pixels = int(pixels)
    # Convert bbox to integer pixel locations.
    min_y = int(float(image_height) * bbox[0])
    min_x = int(float(image_width) * bbox[1])
    max_y = int(float(image_height) * bbox[2])
    max_x = int(float(image_width) * bbox[3])

    if shift_horizontal:
        min_x = np.maximum(0, min_x - pixels)
        max_x = np.minimum(image_width, max_x - pixels)
    else:
        min_y = np.maximum(0, min_y - pixels)
        max_y = np.minimum(image_height, max_y - pixels)

    # Convert bbox back to floats.
    min_y = float(min_y) / float(image_height)
    min_x = float(min_x) / float(image_width)
    max_y = float(max_y) / float(image_height)
    max_x = float(max_x) / float(image_width)

    # Clip the bboxes to be sure the fall between [0, 1].
    min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
    min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
    return np.stack([min_y, min_x, max_y, max_x])


def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
    """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.

    Args:
        image: 3D uint8 Tensor.
        bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
            has 4 elements (min_y, min_x, max_y, max_x) of type float with values
            between [0, 1].
        pixels: An int. How many pixels to shift the image and bboxes
        replace: A one or three value 1D tensor to fill empty pixels.
        shift_horizontal: Boolean. If true then shift in X dimension else shift in
            Y dimension.

    Returns:
        A tuple containing a 3D uint8 Tensor that will be the result of translating
        image by pixels. The second element of the tuple is bboxes, where now
        the coordinates will be shifted to reflect the shifted image.
    """
    if shift_horizontal:
        image = translate_x(image, pixels, replace)
    else:
        image = translate_y(image, pixels, replace)

    # Convert bbox coordinates to pixel values.
    image_height, image_width = image.shape[0], image.shape[1]
    # pylint:disable=g-long-lambda
    wrapped_shift_bbox = lambda bbox: _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal)
    # pylint:enable=g-long-lambda
    new_bboxes = deepcopy(bboxes)
    num_bboxes = len(bboxes)
    for idx in range(num_bboxes):
        new_bboxes[idx] = wrapped_shift_bbox(bboxes[idx])
    return image.astype(np.uint8), new_bboxes


def shear_x(image, level, replace):
    """Equivalent of PIL Shearing in X dimension."""
    # Shear parallel to x axis is a projective transform
    # with a matrix form of:
    # [1    level
    #    0    1].
    image = Image.fromarray(wrap(image))
    image = image.transform(image.size, Image.AFFINE, (1, level, 0, 0, 1, 0))
    return unwrap(np.array(image), replace)


def shear_y(image, level, replace):
    """Equivalent of PIL Shearing in Y dimension."""
    # Shear parallel to y axis is a projective transform
    # with a matrix form of:
    # [1    0
    #    level    1].
    image = Image.fromarray(wrap(image))
    image = image.transform(image.size, Image.AFFINE, (1, 0, 0, level, 1, 0))
    return unwrap(np.array(image), replace)


def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
    """Shifts the bbox according to how the image was sheared.

    Args:
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        image_height: Int, height of the image.
        image_width: Int, height of the image.
        level: Float. How much to shear the image.
        shear_horizontal: If true then shear in X dimension else shear in
            the Y dimension.

    Returns:
        A tensor of the same shape as bbox, but now with the shifted coordinates.
    """
    image_height, image_width = (float(image_height), float(image_width))

    # Change bbox coordinates to be pixels.
    min_y = int(image_height * bbox[0])
    min_x = int(image_width * bbox[1])
    max_y = int(image_height * bbox[2])
    max_x = int(image_width * bbox[3])
    coordinates = np.stack(
        [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
    coordinates = coordinates.astype(np.float32)

    # Shear the coordinates according to the translation matrix.
    if shear_horizontal:
        translation_matrix = np.stack([[1, 0], [-level, 1]])
    else:
        translation_matrix = np.stack([[1, -level], [0, 1]])
    translation_matrix = translation_matrix.astype(np.float32)
    new_coords = np.matmul(translation_matrix,
                           np.transpose(coordinates)).astype(np.int32)

    # Find min/max values and convert them back to floats.
    min_y = float(np.min(new_coords[0, :])) / image_height
    min_x = float(np.min(new_coords[1, :])) / image_width
    max_y = float(np.max(new_coords[0, :])) / image_height
    max_x = float(np.max(new_coords[1, :])) / image_width

    # Clip the bboxes to be sure the fall between [0, 1].
    min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
    min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
    return np.stack([min_y, min_x, max_y, max_x])


def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
    """Applies Shear Transformation to the image and shifts the bboxes.

    Args:
        image: 3D uint8 Tensor.
        bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
            has 4 elements (min_y, min_x, max_y, max_x) of type float with values
            between [0, 1].
        level: Float. How much to shear the image. This value will be between
            -0.3 to 0.3.
        replace: A one or three value 1D tensor to fill empty pixels.
        shear_horizontal: Boolean. If true then shear in X dimension else shear in
            the Y dimension.

    Returns:
        A tuple containing a 3D uint8 Tensor that will be the result of shearing
        image by level. The second element of the tuple is bboxes, where now
        the coordinates will be shifted to reflect the sheared image.
    """
    if shear_horizontal:
        image = shear_x(image, level, replace)
    else:
        image = shear_y(image, level, replace)

    # Convert bbox coordinates to pixel values.
    image_height, image_width = image.shape[:2]
    # pylint:disable=g-long-lambda
    wrapped_shear_bbox = lambda bbox: _shear_bbox(bbox, image_height, image_width, level, shear_horizontal)
    # pylint:enable=g-long-lambda
    new_bboxes = deepcopy(bboxes)
    num_bboxes = len(bboxes)
    for idx in range(num_bboxes):
        new_bboxes[idx] = wrapped_shear_bbox(bboxes[idx])
    return image.astype(np.uint8), new_bboxes


def autocontrast(image):
    """Implements Autocontrast function from PIL.

    Args:
        image: A 3D uint8 tensor.

    Returns:
        The image after it has had autocontrast applied to it and will be of type
        uint8.
    """

    def scale_channel(image):
        """Scale the 2D image using the autocontrast rule."""
        # A possibly cheaper version can be done using cumsum/unique_with_counts
        # over the histogram values, rather than iterating over the entire image.
        # to compute mins and maxes.
        lo = float(np.min(image))
        hi = float(np.max(image))

        # Scale the image, making the lowest value 0 and the highest value 255.
        def scale_values(im):
            scale = 255.0 / (hi - lo)
            offset = -lo * scale
            im = im.astype(np.float32) * scale + offset
            img = np.clip(im, a_min=0, a_max=255.0)
            return im.astype(np.uint8)

        result = scale_values(image) if hi > lo else image
        return result

    # Assumes RGB for now.    Scales each channel independently
    # and then stacks the result.
    s1 = scale_channel(image[:, :, 0])
    s2 = scale_channel(image[:, :, 1])
    s3 = scale_channel(image[:, :, 2])
    image = np.stack([s1, s2, s3], 2)
    return image


def sharpness(image, factor):
    """Implements Sharpness function from PIL."""
    orig_image = image
    image = image.astype(np.float32)
    # Make image 4D for conv operation.
    # SMOOTH PIL Kernel.
    kernel = np.array([[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=np.float32) / 13.
    result = cv2.filter2D(image, -1, kernel).astype(np.uint8)

    # Blend the final result.
    return blend(result, orig_image, factor)


def equalize(image):
    """Implements Equalize function from PIL using."""

    def scale_channel(im, c):
        """Scale the data in the channel to implement equalize."""
        im = im[:, :, c].astype(np.int32)
        # Compute the histogram of the image channel.
        histo, _ = np.histogram(im, range=[0, 255], bins=256)

        # For the purposes of computing the step, filter out the nonzeros.
        nonzero = np.where(np.not_equal(histo, 0))
        nonzero_histo = np.reshape(np.take(histo, nonzero), [-1])
        step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255

        def build_lut(histo, step):
            # Compute the cumulative sum, shifting by step // 2
            # and then normalization by step.
            lut = (np.cumsum(histo) + (step // 2)) // step
            # Shift lut, prepending with 0.
            lut = np.concatenate([[0], lut[:-1]], 0)
            # Clip the counts to be in range.    This is done
            # in the C code for image.point.
            return np.clip(lut, a_min=0, a_max=255).astype(np.uint8)

        # If step is zero, return the original image.    Otherwise, build
        # lut from the full histogram and step and then index from it.
        if step == 0:
            result = im
        else:
            result = np.take(build_lut(histo, step), im)

        return result.astype(np.uint8)

    # Assumes RGB for now.    Scales each channel independently
    # and then stacks the result.
    s1 = scale_channel(image, 0)
    s2 = scale_channel(image, 1)
    s3 = scale_channel(image, 2)
    image = np.stack([s1, s2, s3], 2)
    return image


def wrap(image):
    """Returns 'image' with an extra channel set to all 1s."""
    shape = image.shape
    extended_channel = 255 * np.ones([shape[0], shape[1], 1], image.dtype)
    extended = np.concatenate([image, extended_channel], 2).astype(image.dtype)
    return extended


def unwrap(image, replace):
    """Unwraps an image produced by wrap.

    Where there is a 0 in the last channel for every spatial position,
    the rest of the three channels in that spatial dimension are grayed
    (set to 128).    Operations like translate and shear on a wrapped
    Tensor will leave 0s in empty locations.    Some transformations look
    at the intensity of values to do preprocessing, and we want these
    empty pixels to assume the 'average' value, rather than pure black.


    Args:
        image: A 3D Image Tensor with 4 channels.
        replace: A one or three value 1D tensor to fill empty pixels.

    Returns:
        image: A 3D image Tensor with 3 channels.
    """
    image_shape = image.shape
    # Flatten the spatial dimensions.
    flattened_image = np.reshape(image, [-1, image_shape[2]])

    # Find all pixels where the last channel is zero.
    alpha_channel = flattened_image[:, 3]

    replace = np.concatenate([replace, np.ones([1], image.dtype)], 0)

    # Where they are zero, fill them in with 'replace'.
    alpha_channel = np.reshape(alpha_channel, (-1, 1))
    alpha_channel = np.tile(alpha_channel, reps=(1, flattened_image.shape[1]))

    flattened_image = np.where(
        np.equal(alpha_channel, 0),
        np.ones_like(
            flattened_image, dtype=image.dtype) * replace,
        flattened_image)

    image = np.reshape(flattened_image, image_shape)
    image = image[:, :, :3]
    return image.astype(np.uint8)


def _cutout_inside_bbox(image, bbox, pad_fraction):
    """Generates cutout mask and the mean pixel value of the bbox.

    First a location is randomly chosen within the image as the center where the
    cutout mask will be applied. Note this can be towards the boundaries of the
    image, so the full cutout mask may not be applied.

    Args:
        image: 3D uint8 Tensor.
        bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
            of type float that represents the normalized coordinates between 0 and 1.
        pad_fraction: Float that specifies how large the cutout mask should be in
            in reference to the size of the original bbox. If pad_fraction is 0.25,
            then the cutout mask will be of shape
            (0.25 * bbox height, 0.25 * bbox width).

    Returns:
        A tuple. Fist element is a tensor of the same shape as image where each
        element is either a 1 or 0 that is used to determine where the image
        will have cutout applied. The second element is the mean of the pixels
        in the image where the bbox is located.
        mask value: [0,1]
    """
    image_height, image_width = image.shape[0], image.shape[1]
    # Transform from shape [1, 4] to [4].
    bbox = np.squeeze(bbox)

    min_y = int(float(image_height) * bbox[0])
    min_x = int(float(image_width) * bbox[1])
    max_y = int(float(image_height) * bbox[2])
    max_x = int(float(image_width) * bbox[3])

    # Calculate the mean pixel values in the bounding box, which will be used
    # to fill the cutout region.
    mean = np.mean(image[min_y:max_y + 1, min_x:max_x + 1], axis=(0, 1))
    # Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
    # region lies entirely within the bbox.
    box_height = max_y - min_y + 1
    box_width = max_x - min_x + 1
    pad_size_height = int(pad_fraction * (box_height / 2))
    pad_size_width = int(pad_fraction * (box_width / 2))

    # Sample the center location in the image where the zero mask will be applied.
    cutout_center_height = np.random.randint(min_y, max_y + 1, dtype=np.int32)
    cutout_center_width = np.random.randint(min_x, max_x + 1, dtype=np.int32)

    lower_pad = np.maximum(0, cutout_center_height - pad_size_height)
    upper_pad = np.maximum(
        0, image_height - cutout_center_height - pad_size_height)
    left_pad = np.maximum(0, cutout_center_width - pad_size_width)
    right_pad = np.maximum(0,
                           image_width - cutout_center_width - pad_size_width)

    cutout_shape = [
        image_height - (lower_pad + upper_pad),
        image_width - (left_pad + right_pad)
    ]
    padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]

    mask = np.pad(np.zeros(
        cutout_shape, dtype=image.dtype),
                  padding_dims,
                  'constant',
                  constant_values=1)

    mask = np.expand_dims(mask, 2)
    mask = np.tile(mask, [1, 1, 3])
    return mask, mean


def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
    """Applies cutout to the image according to bbox information.

    This is a cutout variant that using bbox information to make more informed
    decisions on where to place the cutout mask.

    Args:
        image: 3D uint8 Tensor.
        bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
            has 4 elements (min_y, min_x, max_y, max_x) of type float with values
            between [0, 1].
        pad_fraction: Float that specifies how large the cutout mask should be in
            in reference to the size of the original bbox. If pad_fraction is 0.25,
            then the cutout mask will be of shape
            (0.25 * bbox height, 0.25 * bbox width).
        replace_with_mean: Boolean that specified what value should be filled in
            where the cutout mask is applied. Since the incoming image will be of
            uint8 and will not have had any mean normalization applied, by default
            we set the value to be 128. If replace_with_mean is True then we find
            the mean pixel values across the channel dimension and use those to fill
            in where the cutout mask is applied.

    Returns:
        A tuple. First element is a tensor of the same shape as image that has
        cutout applied to it. Second element is the bboxes that were passed in
        that will be unchanged.
    """

    def apply_bbox_cutout(image, bboxes, pad_fraction):
        """Applies cutout to a single bounding box within image."""
        # Choose a single bounding box to apply cutout to.
        random_index = np.random.randint(0, bboxes.shape[0], dtype=np.int32)
        # Select the corresponding bbox and apply cutout.
        chosen_bbox = np.take(bboxes, random_index, axis=0)
        mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)

        # When applying cutout we either set the pixel value to 128 or to the mean
        # value inside the bbox.
        replace = mean if replace_with_mean else [128] * 3

        # Apply the cutout mask to the image. Where the mask is 0 we fill it with
        # `replace`.
        image = np.where(
            np.equal(mask, 0),
            np.ones_like(
                image, dtype=image.dtype) * replace,
            image).astype(image.dtype)
        return image

    # Check to see if there are boxes, if so then apply boxcutout.
    if len(bboxes) != 0:
        image = apply_bbox_cutout(image, bboxes, pad_fraction)

    return image, bboxes


NAME_TO_FUNC = {
        'AutoContrast': autocontrast,
        'Equalize': equalize,
        'Posterize': posterize,
        'Solarize': solarize,
        'SolarizeAdd': solarize_add,
        'Color': color,
        'Contrast': contrast,
        'Brightness': brightness,
        'Sharpness': sharpness,
        'Cutout': cutout,
        'BBox_Cutout': bbox_cutout,
        'Rotate_BBox': rotate_with_bboxes,
        # pylint:disable=g-long-lambda
        'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
                image, bboxes, pixels, replace, shift_horizontal=True),
        'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
                image, bboxes, pixels, replace, shift_horizontal=False),
        'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
                image, bboxes, level, replace, shear_horizontal=True),
        'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
                image, bboxes, level, replace, shear_horizontal=False),
        # pylint:enable=g-long-lambda
        'Rotate_Only_BBoxes': rotate_only_bboxes,
        'ShearX_Only_BBoxes': shear_x_only_bboxes,
        'ShearY_Only_BBoxes': shear_y_only_bboxes,
        'TranslateX_Only_BBoxes': translate_x_only_bboxes,
        'TranslateY_Only_BBoxes': translate_y_only_bboxes,
        'Flip_Only_BBoxes': flip_only_bboxes,
        'Solarize_Only_BBoxes': solarize_only_bboxes,
        'Equalize_Only_BBoxes': equalize_only_bboxes,
        'Cutout_Only_BBoxes': cutout_only_bboxes,
}


def _randomly_negate_tensor(tensor):
    """With 50% prob turn the tensor negative."""
    should_flip = np.floor(np.random.rand() + 0.5) >= 1
    final_tensor = tensor if should_flip else -tensor
    return final_tensor


def _rotate_level_to_arg(level):
    level = (level / _MAX_LEVEL) * 30.
    level = _randomly_negate_tensor(level)
    return (level, )


def _shrink_level_to_arg(level):
    """Converts level to ratio by which we shrink the image content."""
    if level == 0:
        return (1.0, )  # if level is zero, do not shrink the image
    # Maximum shrinking ratio is 2.9.
    level = 2. / (_MAX_LEVEL / level) + 0.9
    return (level, )


def _enhance_level_to_arg(level):
    return ((level / _MAX_LEVEL) * 1.8 + 0.1, )


def _shear_level_to_arg(level):
    level = (level / _MAX_LEVEL) * 0.3
    # Flip level to negative with 50% chance.
    level = _randomly_negate_tensor(level)
    return (level, )


def _translate_level_to_arg(level, translate_const):
    level = (level / _MAX_LEVEL) * float(translate_const)
    # Flip level to negative with 50% chance.
    level = _randomly_negate_tensor(level)
    return (level, )


def _bbox_cutout_level_to_arg(level, hparams):
    cutout_pad_fraction = (level /
                           _MAX_LEVEL) * 0.75  # hparams.cutout_max_pad_fraction
    return (cutout_pad_fraction, False)  # hparams.cutout_bbox_replace_with_mean


def level_to_arg(hparams):
    return {
        'AutoContrast': lambda level: (),
        'Equalize': lambda level: (),
        'Posterize': lambda level: (int((level / _MAX_LEVEL) * 4), ),
        'Solarize': lambda level: (int((level / _MAX_LEVEL) * 256), ),
        'SolarizeAdd': lambda level: (int((level / _MAX_LEVEL) * 110), ),
        'Color': _enhance_level_to_arg,
        'Contrast': _enhance_level_to_arg,
        'Brightness': _enhance_level_to_arg,
        'Sharpness': _enhance_level_to_arg,
        'Cutout':
        lambda level: (int((level / _MAX_LEVEL) * 100), ),  # hparams.cutout_const=100
        # pylint:disable=g-long-lambda
        'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(level, hparams),
        'TranslateX_BBox':
        lambda level: _translate_level_to_arg(level, 250),  # hparams.translate_const=250
        'TranslateY_BBox':
        lambda level: _translate_level_to_arg(level, 250),  # hparams.translate_cons
        # pylint:enable=g-long-lambda
        'ShearX_BBox': _shear_level_to_arg,
        'ShearY_BBox': _shear_level_to_arg,
        'Rotate_BBox': _rotate_level_to_arg,
        'Rotate_Only_BBoxes': _rotate_level_to_arg,
        'ShearX_Only_BBoxes': _shear_level_to_arg,
        'ShearY_Only_BBoxes': _shear_level_to_arg,
        # pylint:disable=g-long-lambda
        'TranslateX_Only_BBoxes':
        lambda level: _translate_level_to_arg(level, 120),  # hparams.translate_bbox_const
        'TranslateY_Only_BBoxes':
        lambda level: _translate_level_to_arg(level, 120),  # hparams.translate_bbox_const
        # pylint:enable=g-long-lambda
        'Flip_Only_BBoxes': lambda level: (),
        'Solarize_Only_BBoxes':
        lambda level: (int((level / _MAX_LEVEL) * 256), ),
        'Equalize_Only_BBoxes': lambda level: (),
        # pylint:disable=g-long-lambda
        'Cutout_Only_BBoxes':
        lambda level: (int((level / _MAX_LEVEL) * 50), ),  # hparams.cutout_bbox_const
        # pylint:enable=g-long-lambda
    }


def bbox_wrapper(func):
    """Adds a bboxes function argument to func and returns unchanged bboxes."""

    def wrapper(images, bboxes, *args, **kwargs):
        return (func(images, *args, **kwargs), bboxes)

    return wrapper


def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
    """Return the function that corresponds to `name` and update `level` param."""
    func = NAME_TO_FUNC[name]
    args = level_to_arg(augmentation_hparams)[name](level)

    # Check to see if prob is passed into function. This is used for operations
    # where we alter bboxes independently.
    # pytype:disable=wrong-arg-types
    if 'prob' in inspect.getargspec(func)[0]:
        args = tuple([prob] + list(args))
    # pytype:enable=wrong-arg-types

    # Add in replace arg if it is required for the function that is being called.
    if 'replace' in inspect.getargspec(func)[0]:
        # Make sure replace is the final argument
        assert 'replace' == inspect.getargspec(func)[0][-1]
        args = tuple(list(args) + [replace_value])

    # Add bboxes as the second positional argument for the function if it does
    # not already exist.
    if 'bboxes' not in inspect.getargspec(func)[0]:
        func = bbox_wrapper(func)
    return (func, prob, args)


def _apply_func_with_prob(func, image, args, prob, bboxes):
    """Apply `func` to image w/ `args` as input with probability `prob`."""
    assert isinstance(args, tuple)
    assert 'bboxes' == inspect.getargspec(func)[0][1]

    # If prob is a function argument, then this randomness is being handled
    # inside the function, so make sure it is always called.
    if 'prob' in inspect.getargspec(func)[0]:
        prob = 1.0

    # Apply the function with probability `prob`.
    should_apply_op = np.floor(np.random.rand() + 0.5) >= 1
    if should_apply_op:
        augmented_image, augmented_bboxes = func(image, bboxes, *args)
    else:
        augmented_image, augmented_bboxes = (image, bboxes)
    return augmented_image, augmented_bboxes


def select_and_apply_random_policy(policies, image, bboxes):
    """Select a random policy from `policies` and apply it to `image`."""
    policy_to_select = np.random.randint(0, len(policies), dtype=np.int32)
    # policy_to_select = 6 # for test
    for (i, policy) in enumerate(policies):
        if i == policy_to_select:
            image, bboxes = policy(image, bboxes)
    return (image, bboxes)


def build_and_apply_nas_policy(policies, image, bboxes, augmentation_hparams):
    """Build a policy from the given policies passed in and apply to image.

    Args:
        policies: list of lists of tuples in the form `(func, prob, level)`, `func`
            is a string name of the augmentation function, `prob` is the probability
            of applying the `func` operation, `level` is the input argument for
            `func`.
        image: numpy array that the resulting policy will be applied to.
        bboxes:
        augmentation_hparams: Hparams associated with the NAS learned policy.

    Returns:
        A version of image that now has data augmentation applied to it based on
        the `policies` pass into the function. Additionally, returns bboxes if
        a value for them is passed in that is not None
    """
    replace_value = [128, 128, 128]

    # func is the string name of the augmentation function, prob is the
    # probability of applying the operation and level is the parameter associated

    # tf_policies are functions that take in an image and return an augmented
    # image.
    tf_policies = []
    for policy in policies:
        tf_policy = []
        # Link string name to the correct python function and make sure the correct
        # argument is passed into that function.
        for policy_info in policy:
            policy_info = list(
                policy_info) + [replace_value, augmentation_hparams]

            tf_policy.append(_parse_policy_info(*policy_info))
        # Now build the tf policy that will apply the augmentation procedue
        # on image.
        def make_final_policy(tf_policy_):
            def final_policy(image_, bboxes_):
                for func, prob, args in tf_policy_:
                    image_, bboxes_ = _apply_func_with_prob(func, image_, args,
                                                            prob, bboxes_)
                return image_, bboxes_

            return final_policy

        tf_policies.append(make_final_policy(tf_policy))

    augmented_images, augmented_bboxes = select_and_apply_random_policy(
        tf_policies, image, bboxes)
    # If no bounding boxes were specified, then just return the images.
    return (augmented_images, augmented_bboxes)


# TODO(barretzoph): Add in ArXiv link once paper is out.
def distort_image_with_autoaugment(image, bboxes, augmentation_name):
    """Applies the AutoAugment policy to `image` and `bboxes`.

    Args:
        image: `Tensor` of shape [height, width, 3] representing an image.
        bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
            normalized between [0, 1].
        augmentation_name: The name of the AutoAugment policy to use. The available
            options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
            all of the results in the paper and was found to achieve the best results
            on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
            found on the COCO dataset that have slight variation in what operations
            were used during the search procedure along with how many operations are
            applied in parallel to a single image (2 vs 3).

    Returns:
        A tuple containing the augmented versions of `image` and `bboxes`.
    """
    available_policies = {
        'v0': policy_v0,
        'v1': policy_v1,
        'v2': policy_v2,
        'v3': policy_v3,
        'test': policy_vtest
    }
    if augmentation_name not in available_policies:
        raise ValueError('Invalid augmentation_name: {}'.format(
            augmentation_name))

    policy = available_policies[augmentation_name]()
    augmentation_hparams = {}
    return build_and_apply_nas_policy(policy, image, bboxes,
                                      augmentation_hparams)