trajectory.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wangguanzhong 已提交
15 16 17 18 19
// The code is based on:
// https://github.com/CnybTseng/JDE/blob/master/platforms/common/trajectory.h
// Ths copyright of CnybTseng/JDE is as follows:
// MIT License

20 21 22
#pragma once

#include <vector>
23 24 25 26 27

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "opencv2/video/tracking.hpp"
28 29 30

namespace PaddleDetection {

31
typedef enum { New = 0, Tracked = 1, Lost = 2, Removed = 3 } TrajectoryState;
32 33 34 35

class Trajectory;
typedef std::vector<Trajectory> TrajectoryPool;
typedef std::vector<Trajectory>::iterator TrajectoryPoolIterator;
36
typedef std::vector<Trajectory *> TrajectoryPtrPool;
37 38
typedef std::vector<Trajectory *>::iterator TrajectoryPtrPoolIterator;

39 40 41 42 43 44 45 46 47 48 49 50
class TKalmanFilter : public cv::KalmanFilter {
 public:
  TKalmanFilter(void);
  virtual ~TKalmanFilter(void) {}
  virtual void init(const cv::Mat &measurement);
  virtual const cv::Mat &predict();
  virtual const cv::Mat &correct(const cv::Mat &measurement);
  virtual void project(cv::Mat *mean, cv::Mat *covariance) const;

 private:
  float std_weight_position;
  float std_weight_velocity;
51 52
};

53 54 55 56 57 58 59
inline TKalmanFilter::TKalmanFilter(void) : cv::KalmanFilter(8, 4) {
  cv::KalmanFilter::transitionMatrix = cv::Mat::eye(8, 8, CV_32F);
  for (int i = 0; i < 4; ++i)
    cv::KalmanFilter::transitionMatrix.at<float>(i, i + 4) = 1;
  cv::KalmanFilter::measurementMatrix = cv::Mat::eye(4, 8, CV_32F);
  std_weight_position = 1 / 20.f;
  std_weight_velocity = 1 / 160.f;
60 61
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class Trajectory : public TKalmanFilter {
 public:
  Trajectory();
  Trajectory(const cv::Vec4f &ltrb, float score, const cv::Mat &embedding);
  Trajectory(const Trajectory &other);
  Trajectory &operator=(const Trajectory &rhs);
  virtual ~Trajectory(void) {}

  static int next_id();
  virtual const cv::Mat &predict(void);
  virtual void update(Trajectory *traj,
                      int timestamp,
                      bool update_embedding = true);
  virtual void activate(int timestamp);
  virtual void reactivate(Trajectory *traj, int timestamp, bool newid = false);
  virtual void mark_lost(void);
  virtual void mark_removed(void);

  friend TrajectoryPool operator+(const TrajectoryPool &a,
                                  const TrajectoryPool &b);
  friend TrajectoryPool operator+(const TrajectoryPool &a,
                                  const TrajectoryPtrPool &b);
  friend TrajectoryPool &operator+=(TrajectoryPool &a,  // NOLINT
                                    const TrajectoryPtrPool &b);
  friend TrajectoryPool operator-(const TrajectoryPool &a,
                                  const TrajectoryPool &b);
  friend TrajectoryPool &operator-=(TrajectoryPool &a,  // NOLINT
                                    const TrajectoryPool &b);
  friend TrajectoryPtrPool operator+(const TrajectoryPtrPool &a,
                                     const TrajectoryPtrPool &b);
  friend TrajectoryPtrPool operator+(const TrajectoryPtrPool &a,
                                     TrajectoryPool *b);
  friend TrajectoryPtrPool operator-(const TrajectoryPtrPool &a,
                                     const TrajectoryPtrPool &b);

  friend cv::Mat embedding_distance(const TrajectoryPool &a,
                                    const TrajectoryPool &b);
  friend cv::Mat embedding_distance(const TrajectoryPtrPool &a,
                                    const TrajectoryPtrPool &b);
  friend cv::Mat embedding_distance(const TrajectoryPtrPool &a,
                                    const TrajectoryPool &b);

  friend cv::Mat mahalanobis_distance(const TrajectoryPool &a,
                                      const TrajectoryPool &b);
  friend cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a,
                                      const TrajectoryPtrPool &b);
  friend cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a,
                                      const TrajectoryPool &b);

  friend cv::Mat iou_distance(const TrajectoryPool &a, const TrajectoryPool &b);
  friend cv::Mat iou_distance(const TrajectoryPtrPool &a,
                              const TrajectoryPtrPool &b);
  friend cv::Mat iou_distance(const TrajectoryPtrPool &a,
                              const TrajectoryPool &b);

 private:
  void update_embedding(const cv::Mat &embedding);

 public:
  TrajectoryState state;
  cv::Vec4f ltrb;
  cv::Mat smooth_embedding;
  int id;
  bool is_activated;
  int timestamp;
  int starttime;
  float score;

 private:
  static int count;
  cv::Vec4f xyah;
  cv::Mat current_embedding;
  float eta;
  int length;
136 137
};

138 139 140 141 142 143 144
inline cv::Vec4f ltrb2xyah(const cv::Vec4f &ltrb) {
  cv::Vec4f xyah;
  xyah[0] = (ltrb[0] + ltrb[2]) * 0.5f;
  xyah[1] = (ltrb[1] + ltrb[3]) * 0.5f;
  xyah[3] = ltrb[3] - ltrb[1];
  xyah[2] = (ltrb[2] - ltrb[0]) / xyah[3];
  return xyah;
145 146
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
inline Trajectory::Trajectory()
    : state(New),
      ltrb(cv::Vec4f()),
      smooth_embedding(cv::Mat()),
      id(0),
      is_activated(false),
      timestamp(0),
      starttime(0),
      score(0),
      eta(0.9),
      length(0) {}

inline Trajectory::Trajectory(const cv::Vec4f &ltrb_,
                              float score_,
                              const cv::Mat &embedding)
    : state(New),
      ltrb(ltrb_),
      smooth_embedding(cv::Mat()),
      id(0),
      is_activated(false),
      timestamp(0),
      starttime(0),
      score(score_),
      eta(0.9),
      length(0) {
  xyah = ltrb2xyah(ltrb);
  update_embedding(embedding);
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
inline Trajectory::Trajectory(const Trajectory &other)
    : state(other.state),
      ltrb(other.ltrb),
      id(other.id),
      is_activated(other.is_activated),
      timestamp(other.timestamp),
      starttime(other.starttime),
      xyah(other.xyah),
      score(other.score),
      eta(other.eta),
      length(other.length) {
  other.smooth_embedding.copyTo(smooth_embedding);
  other.current_embedding.copyTo(current_embedding);
  // copy state in KalmanFilter

  other.statePre.copyTo(cv::KalmanFilter::statePre);
  other.statePost.copyTo(cv::KalmanFilter::statePost);
  other.errorCovPre.copyTo(cv::KalmanFilter::errorCovPre);
  other.errorCovPost.copyTo(cv::KalmanFilter::errorCovPost);
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
inline Trajectory &Trajectory::operator=(const Trajectory &rhs) {
  this->state = rhs.state;
  this->ltrb = rhs.ltrb;
  rhs.smooth_embedding.copyTo(this->smooth_embedding);
  this->id = rhs.id;
  this->is_activated = rhs.is_activated;
  this->timestamp = rhs.timestamp;
  this->starttime = rhs.starttime;
  this->xyah = rhs.xyah;
  this->score = rhs.score;
  rhs.current_embedding.copyTo(this->current_embedding);
  this->eta = rhs.eta;
  this->length = rhs.length;

  // copy state in KalmanFilter

  rhs.statePre.copyTo(cv::KalmanFilter::statePre);
  rhs.statePost.copyTo(cv::KalmanFilter::statePost);
  rhs.errorCovPre.copyTo(cv::KalmanFilter::errorCovPre);
  rhs.errorCovPost.copyTo(cv::KalmanFilter::errorCovPost);

  return *this;
219 220
}

221 222 223
inline int Trajectory::next_id() {
  ++count;
  return count;
224 225
}

226
inline void Trajectory::mark_lost(void) { state = Lost; }
227

228
inline void Trajectory::mark_removed(void) { state = Removed; }
229

230
}  // namespace PaddleDetection