sample_trainer_rnn_gen.conf 2.6 KB
Newer Older
Z
zhangjinchao01 已提交
1
#edit-mode: -*- python -*-
2
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
from paddle.trainer_config_helpers import *
Z
zhangjinchao01 已提交
18

19
settings(batch_size=15, learning_rate=0)
Z
zhangjinchao01 已提交
20 21

num_words = 5
22
beam_flag = get_config_arg('beam_search', bool, False)
Z
zhangjinchao01 已提交
23

24
sent_id = data_layer(name="sent_id", size=1)
Z
zhangjinchao01 已提交
25 26 27

# This layer has no actual use, but only to decide batch_size in generation.
# When generating, at least one Memory in RecurrentLayer MUST have a boot layer.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
dummy_data = data_layer(name="dummy_data_input", size=2)

gen_inputs = [StaticInput(input=dummy_data, size=2),
              GeneratedInput(size=num_words,
                             embedding_name="wordvec",
                             embedding_size=num_words)]

def step(dummy_memory, predict_word):
    
    # simplified RNN for testing
    with mixed_layer(size=num_words) as layer:
        layer += full_matrix_projection(input=predict_word,
                                        param_attr=ParamAttr(name="transtable"))

    with mixed_layer(size=num_words, act=ExpActivation()) as out:
        out += trans_full_matrix_projection(input=layer,
                                            param_attr=ParamAttr(name="wordvec"))

    return out
    
beam_gen = beam_search(name="rnn_gen",
                       step=step,
                       input=gen_inputs,
                       bos_id=0,
                       eos_id=num_words-1,
                       beam_size=2 if beam_flag else 1,
                       num_results_per_sample=2 if beam_flag else 1,
                       max_length=10) 

57 58 59 60
seqtext_printer_evaluator(input=beam_gen,
                          id_input=sent_id,
                          dict_file="./trainer/tests/test_gen_dict.txt",
                          result_file="./trainer/tests/dump_text.test")
61 62 63 64 65 66
#outputs(beam_gen)
# In this config, as dummy_data_input doesn't work on beam_gen (we can find dummy_memory
# is read-only memory, and isn't used by other layers of step), we show the Inputs and Outputs
# as follows. Note that "__beam_search_predict__" is the default output name of beam_search.
Inputs("sent_id","dummy_data_input")
Outputs("__beam_search_predict__")