reader.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20 21 22 23
import copy
import functools
import collections
import traceback
import numpy as np
24
import logging
25 26 27 28

from ppdet.core.workspace import register, serializable

from .parallel_map import ParallelMap
K
Kaipeng Deng 已提交
29
from .transform.batch_operators import Gt2YoloTarget
30 31

__all__ = ['Reader', 'create_reader']
32 33 34 35

logger = logging.getLogger(__name__)


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class Compose(object):
    def __init__(self, transforms, ctx=None):
        self.transforms = transforms
        self.ctx = ctx

    def __call__(self, data):
        ctx = self.ctx if self.ctx else {}
        for f in self.transforms:
            try:
                data = f(data, ctx)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.info("fail to map op [{}] with error: {} and stack:\n{}".
                            format(f, e, str(stack_info)))
                raise e
        return data


def _calc_img_weights(roidbs):
    """ calculate the probabilities of each sample
    """
    imgs_cls = []
    num_per_cls = {}
    img_weights = []
    for i, roidb in enumerate(roidbs):
        img_cls = set([k for cls in roidbs[i]['gt_class'] for k in cls])
        imgs_cls.append(img_cls)
        for c in img_cls:
            if c not in num_per_cls:
                num_per_cls[c] = 1
            else:
                num_per_cls[c] += 1

    for i in range(len(roidbs)):
        weights = 0
        for c in imgs_cls[i]:
            weights += 1 / num_per_cls[c]
        img_weights.append(weights)
    # probabilities sum to 1
    img_weights = img_weights / np.sum(img_weights)
    return img_weights


def _has_empty(item):
    def empty(x):
        if isinstance(x, np.ndarray) and x.size == 0:
            return True
        elif isinstance(x, collections.Sequence) and len(x) == 0:
            return True
        else:
            return False

    if isinstance(item, collections.Sequence) and len(item) == 0:
        return True
    if item is None:
        return True
    if empty(item):
        return True
    return False


def _segm(samples):
    assert 'gt_poly' in samples
    segms = samples['gt_poly']
    if 'is_crowd' in samples:
        is_crowd = samples['is_crowd']
        if len(segms) != 0:
            assert len(segms) == is_crowd.shape[0]

    gt_masks = []
    valid = True
    for i in range(len(segms)):
        segm = segms[i]
        gt_segm = []
        if 'is_crowd' in samples and is_crowd[i]:
            gt_segm.append([[0, 0]])
        else:
            for poly in segm:
                if len(poly) == 0:
                    valid = False
                    break
                gt_segm.append(np.array(poly).reshape(-1, 2))
        if (not valid) or len(gt_segm) == 0:
            break
        gt_masks.append(gt_segm)
    return gt_masks


def batch_arrange(batch_samples, fields):
    def im_shape(samples, dim=3):
        # hard code
        assert 'h' in samples
        assert 'w' in samples
        if dim == 3:  # RCNN, ..
            return np.array((samples['h'], samples['w'], 1), dtype=np.float32)
        else:  # YOLOv3, ..
            return np.array((samples['h'], samples['w']), dtype=np.int32)

    arrange_batch = []
    for samples in batch_samples:
        one_ins = ()
        for i, field in enumerate(fields):
            if field == 'gt_mask':
                one_ins += (_segm(samples), )
            elif field == 'im_shape':
                one_ins += (im_shape(samples), )
            elif field == 'im_size':
                one_ins += (im_shape(samples, 2), )
            else:
                if field == 'is_difficult':
                    field = 'difficult'
                assert field in samples, '{} not in samples'.format(field)
                one_ins += (samples[field], )
        arrange_batch.append(one_ins)
    return arrange_batch


@register
@serializable
155
class Reader(object):
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    """
    Args:
        dataset (DataSet): DataSet object
        sample_transforms (list of BaseOperator): a list of sample transforms
            operators.
        batch_transforms (list of BaseOperator): a list of batch transforms
            operators.
        batch_size (int): batch size.
        shuffle (bool): whether shuffle dataset or not. Default False.
        drop_last (bool): whether drop last batch or not. Default False.
        drop_empty (bool): whether drop sample when it's gt is empty or not.
            Default True.
        mixup_epoch (int): mixup epoc number. Default is -1, meaning
            not use mixup.
        class_aware_sampling (bool): whether use class-aware sampling or not.
            Default False.
        worker_num (int): number of working threads/processes.
            Default -1, meaning not use multi-threads/multi-processes.
        use_process (bool): whether use multi-processes or not.
            It only works when worker_num > 1. Default False.
        bufsize (int): buffer size for multi-threads/multi-processes,
            please note, one instance in buffer is one batch data.
        memsize (str): size of shared memory used in result queue when
            use_process is true. Default 3G.
        inputs_def (dict): network input definition use to get input fields,
            which is used to determine the order of returned data.
    """

    def __init__(self,
                 dataset=None,
                 sample_transforms=None,
                 batch_transforms=None,
                 batch_size=None,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
                 mixup_epoch=-1,
                 class_aware_sampling=False,
                 worker_num=-1,
                 use_process=False,
K
Kaipeng Deng 已提交
196 197
                 use_fine_grained_loss=False,
                 num_classes=80,
198 199 200 201 202 203 204 205 206 207 208 209
                 bufsize=100,
                 memsize='3G',
                 inputs_def=None):
        self._dataset = dataset
        self._roidbs = self._dataset.get_roidb()
        self._fields = copy.deepcopy(inputs_def[
            'fields']) if inputs_def else None

        # transform
        self._sample_transforms = Compose(sample_transforms,
                                          {'fields': self._fields})
        self._batch_transforms = None
K
Kaipeng Deng 已提交
210 211 212 213 214 215 216 217 218 219 220

        if use_fine_grained_loss:
            for bt in batch_transforms:
                if isinstance(bt, Gt2YoloTarget):
                    bt.num_classes = num_classes
        elif batch_transforms:
            batch_transforms = [
                bt for bt in batch_transforms
                if not isinstance(bt, Gt2YoloTarget)
            ]

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        if batch_transforms:
            self._batch_transforms = Compose(batch_transforms,
                                             {'fields': self._fields})

        # data
        if inputs_def and inputs_def.get('multi_scale', False):
            from ppdet.modeling.architectures.input_helper import multiscale_def
            im_shape = inputs_def[
                'image_shape'] if 'image_shape' in inputs_def else [
                    3, None, None
                ]
            _, ms_fields = multiscale_def(im_shape, inputs_def['num_scales'],
                                          inputs_def['use_flip'])
            self._fields += ms_fields
        self._batch_size = batch_size
        self._shuffle = shuffle
        self._drop_last = drop_last
        self._drop_empty = drop_empty

        # sampling
        self._mixup_epoch = mixup_epoch
        self._class_aware_sampling = class_aware_sampling
243

244 245
        self._load_img = False
        self._sample_num = len(self._roidbs)
246

247 248 249
        if self._class_aware_sampling:
            self.img_weights = _calc_img_weights(self._roidbs)
        self._indexes = None
250

251 252 253
        self._pos = -1
        self._epoch = -1
        self._drained = False
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        # multi-process
        self._worker_num = worker_num
        self._parallel = None
        if self._worker_num > -1:
            task = functools.partial(self.worker, self._drop_empty)
            self._parallel = ParallelMap(self, task, worker_num, bufsize,
                                         use_process, memsize)

    def __call__(self):
        if self._worker_num > -1:
            return self._parallel
        else:
            return self

    def __iter__(self):
        return self

    def reset(self):
        """implementation of Dataset.reset
        """
        self.indexes = [i for i in range(self.size())]
        if self._class_aware_sampling:
            self.indexes = np.random.choice(
                self._sample_num,
                self._sample_num,
                replace=False,
                p=self.img_weights)

        if self._shuffle:
            np.random.shuffle(self.indexes)

        if self._mixup_epoch > 0 and len(self.indexes) < 2:
            logger.info("Disable mixup for dataset samples "
                        "less than 2 samples")
            self._mixup_epoch = -1

        if self._epoch < 0:
            self._epoch = 0
293
        else:
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            self._epoch += 1

        self._pos = 0
        self._drained = False

    def __next__(self):
        return self.next()

    def next(self):
        if self._epoch < 0:
            self.reset()
        if self.drained():
            raise StopIteration
        batch = self._load_batch()
        if self._drop_last and len(batch) < self._batch_size:
            raise StopIteration
        if self._worker_num > -1:
            return batch
        else:
            return self.worker(self._drop_empty, batch)

    def _load_batch(self):
        batch = []
        bs = 0
        while bs != self._batch_size:
            if self._pos >= self.size():
                break
            pos = self.indexes[self._pos]
            sample = copy.deepcopy(self._roidbs[pos])
            self._pos += 1

            if self._drop_empty and self._fields and 'gt_mask' in self._fields:
                if _has_empty(_segm(sample)):
                    #logger.warn('gt_mask is empty or not valid in {}'.format(
                    #    sample['im_file']))
                    continue
            if self._drop_empty and self._fields and 'gt_bbox' in self._fields:
                if _has_empty(sample['gt_bbox']):
                    #logger.warn('gt_bbox {} is empty or not valid in {}, '
                    #   'drop this sample'.format(
                    #    sample['im_file'], sample['gt_bbox']))
                    continue

            if self._load_img:
                sample['image'] = self._load_image(sample['im_file'])

            if self._epoch < self._mixup_epoch:
                num = len(self.indexes)
                mix_idx = np.random.randint(1, num)
                mix_idx = self.indexes[(mix_idx + self._pos - 1) % num]
                sample['mixup'] = copy.deepcopy(self._roidbs[mix_idx])
                if self._load_img:
                    sample['mixup']['image'] = self._load_image(sample['mixup'][
                        'im_file'])

            batch.append(sample)
            bs += 1
        return batch

    def worker(self, drop_empty=True, batch_samples=None):
        """
        sample transform and batch transform.
        """
        batch = []
        for sample in batch_samples:
            sample = self._sample_transforms(sample)
            if drop_empty and 'gt_bbox' in sample:
                if _has_empty(sample['gt_bbox']):
                    #logger.warn('gt_bbox {} is empty or not valid in {}, '
                    #   'drop this sample'.format(
                    #    sample['im_file'], sample['gt_bbox']))
                    continue
            batch.append(sample)
        if len(batch) > 0 and self._batch_transforms:
            batch = self._batch_transforms(batch)
        if len(batch) > 0 and self._fields:
            batch = batch_arrange(batch, self._fields)
        return batch

    def _load_image(self, filename):
        with open(filename, 'rb') as f:
            return f.read()

    def size(self):
        """ implementation of Dataset.size
        """
        return self._sample_num

    def drained(self):
        """ implementation of Dataset.drained
        """
        assert self._epoch >= 0, 'The first epoch has not begin!'
        return self._pos >= self.size()

    def stop(self):
        if self._parallel:
            self._parallel.stop()


K
Kaipeng Deng 已提交
393
def create_reader(cfg, max_iter=0, global_cfg=None):
394 395 396 397 398 399 400 401 402
    """
    Return iterable data reader.

    Args:
        max_iter (int): number of iterations.
    """
    if not isinstance(cfg, dict):
        raise TypeError("The config should be a dict when creating reader.")

K
Kaipeng Deng 已提交
403 404 405 406 407
    # synchornize use_fine_grained_loss/num_classes from global_cfg to reader cfg
    if global_cfg:
        cfg['use_fine_grained_loss'] = getattr(global_cfg,
                                               'use_fine_grained_loss', False)
        cfg['num_classes'] = getattr(global_cfg, 'num_classes', 80)
408 409 410 411 412 413 414
    reader = Reader(**cfg)()

    def _reader():
        n = 0
        while True:
            for _batch in reader:
                if len(_batch) > 0:
415 416
                    yield _batch
                    n += 1
417
                if max_iter > 0 and n == max_iter:
418
                    return
419 420 421
            reader.reset()
            if max_iter <= 0:
                return
422

423
    return _reader