ssd_head.py 5.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
5 6 7
from paddle.regularizer import L2Decay
from paddle import ParamAttr

8 9
from ..layers import AnchorGeneratorSSD

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

class SepConvLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 padding=1,
                 conv_decay=0,
                 name=None):
        super(SepConvLayer, self).__init__()
        self.dw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
            groups=in_channels,
            weight_attr=ParamAttr(
                name=name + "_dw_weights", regularizer=L2Decay(conv_decay)),
            bias_attr=False)

        self.bn = nn.BatchNorm2D(
            in_channels,
            weight_attr=ParamAttr(
                name=name + "_bn_scale", regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(
                name=name + "_bn_offset", regularizer=L2Decay(0.)))

        self.pw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(
                name=name + "_pw_weights", regularizer=L2Decay(conv_decay)),
            bias_attr=False)

    def forward(self, x):
        x = self.dw_conv(x)
        x = F.relu6(self.bn(x))
        x = self.pw_conv(x)
        return x
Q
qingqing01 已提交
53 54 55 56 57 58 59 60 61 62


@register
class SSDHead(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['anchor_generator', 'loss']

    def __init__(self,
                 num_classes=81,
                 in_channels=(512, 1024, 512, 256, 256, 256),
63
                 anchor_generator=AnchorGeneratorSSD().__dict__,
64 65 66 67
                 kernel_size=3,
                 padding=1,
                 use_sepconv=False,
                 conv_decay=0.,
Q
qingqing01 已提交
68 69 70 71 72 73 74
                 loss='SSDLoss'):
        super(SSDHead, self).__init__()
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.anchor_generator = anchor_generator
        self.loss = loss

75 76 77 78
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)

        self.num_priors = self.anchor_generator.num_priors
Q
qingqing01 已提交
79 80 81
        self.box_convs = []
        self.score_convs = []
        for i, num_prior in enumerate(self.num_priors):
82 83 84 85
            box_conv_name = "boxes{}".format(i)
            if not use_sepconv:
                box_conv = self.add_sublayer(
                    box_conv_name,
Q
qingqing01 已提交
86 87 88
                    nn.Conv2D(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                box_conv = self.add_sublayer(
                    box_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
                        kernel_size=kernel_size,
                        padding=padding,
                        conv_decay=conv_decay,
                        name=box_conv_name))
            self.box_convs.append(box_conv)

            score_conv_name = "scores{}".format(i)
            if not use_sepconv:
                score_conv = self.add_sublayer(
                    score_conv_name,
Q
qingqing01 已提交
107 108 109
                    nn.Conv2D(
                        in_channels=in_channels[i],
                        out_channels=num_prior * num_classes,
110 111 112 113 114 115 116 117 118 119 120 121 122
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                score_conv = self.add_sublayer(
                    score_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
                        out_channels=num_prior * num_classes,
                        kernel_size=kernel_size,
                        padding=padding,
                        conv_decay=conv_decay,
                        name=score_conv_name))
            self.score_convs.append(score_conv)
Q
qingqing01 已提交
123

124 125 126 127 128
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def forward(self, feats, image, gt_bbox=None, gt_class=None):
Q
qingqing01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        box_preds = []
        cls_scores = []
        prior_boxes = []
        for feat, box_conv, score_conv in zip(feats, self.box_convs,
                                              self.score_convs):
            box_pred = box_conv(feat)
            box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
            box_pred = paddle.reshape(box_pred, [0, -1, 4])
            box_preds.append(box_pred)

            cls_score = score_conv(feat)
            cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
            cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
            cls_scores.append(cls_score)

        prior_boxes = self.anchor_generator(feats, image)

146 147 148 149 150
        if self.training:
            return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
                                 prior_boxes)
        else:
            return box_preds, cls_scores, prior_boxes
Q
qingqing01 已提交
151

152 153
    def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
        return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)