yolo.py 2.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5
from ppdet.core.workspace import register, create
Q
qingqing01 已提交
6 7 8 9 10 11 12 13
from .meta_arch import BaseArch

__all__ = ['YOLOv3']


@register
class YOLOv3(BaseArch):
    __category__ = 'architecture'
14
    __inject__ = ['post_process']
Q
qingqing01 已提交
15 16 17 18 19 20 21 22 23 24 25 26

    def __init__(self,
                 backbone='DarkNet',
                 neck='YOLOv3FPN',
                 yolo_head='YOLOv3Head',
                 post_process='BBoxPostProcess'):
        super(YOLOv3, self).__init__()
        self.backbone = backbone
        self.neck = neck
        self.yolo_head = yolo_head
        self.post_process = post_process

27 28 29 30 31 32 33 34 35 36 37 38
    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        # fpn
        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)

        # head
        kwargs = {'input_shape': neck.out_shape}
        yolo_head = create(cfg['yolo_head'], **kwargs)
Q
qingqing01 已提交
39

40 41 42 43 44 45 46 47
        return {
            'backbone': backbone,
            'neck': neck,
            "yolo_head": yolo_head,
        }

    def _forward(self):
        body_feats = self.backbone(self.inputs)
Q
qingqing01 已提交
48 49
        body_feats = self.neck(body_feats)

50 51 52 53 54 55 56 57
        if self.training:
            return self.yolo_head(body_feats, self.inputs)
        else:
            yolo_head_outs = self.yolo_head(body_feats)
            bbox, bbox_num = self.post_process(
                yolo_head_outs, self.yolo_head.mask_anchors,
                self.inputs['im_shape'], self.inputs['scale_factor'])
            return bbox, bbox_num
Q
qingqing01 已提交
58

59 60
    def get_loss(self):
        return self._forward()
Q
qingqing01 已提交
61 62

    def get_pred(self):
63 64 65 66 67 68 69 70 71
        bbox_pred, bbox_num = self._forward()
        label = bbox_pred[:, 0]
        score = bbox_pred[:, 1]
        bbox = bbox_pred[:, 2:]
        output = {
            'bbox': bbox,
            'score': score,
            'label': label,
            'bbox_num': bbox_num
Q
qingqing01 已提交
72
        }
73
        return output