sequence_reverse_op.h 4.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

class SequenceReverseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(x_dim.size(), 2,
                      "Rank of Input(X) must be not less than 2.");

    ctx->SetOutputDim("Y", x_dim);
    ctx->ShareLoD("X", "Y");
  }
};

class SequenceReverseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input LoDTensor of sequence_reverse op.");
    AddOutput("Y", "The output LoDTensor of sequence_reverse op.");
    AddComment(R"DOC(
SequenceReverse Operator.

Reverse each sequence in input X along dim 0.

Assuming X is a LoDTensor with dims [5, 4] and lod [[0, 2, 5]], where:

X.data() = [
  [1, 2, 3, 4],
  [5, 6, 7, 8], # the 0-th sequence with length 2
  [9, 10, 11, 12],
  [13, 14, 15, 16],
  [17, 18, 19, 20] # the 1-st sequence with length 3
]

The output Y would be a LoDTensor sharing the same dims and lod with input X,
and:

Y.data() = [
  [5, 6, 7, 8],
  [1, 2, 3, 4], # the reversed 0-th sequence with length 2
  [17, 18, 19, 20],
  [13, 14, 15, 16],
  [9, 10, 11, 12] # the reversed 1-st sequence with length 3
]

This Operator is useful to build a reverse dynamic RNN network.
    )DOC");
  }
};

template <typename T>
struct SequenceReverseFunctor {
  SequenceReverseFunctor(const T *x, T *y, const size_t *lod, size_t lod_count,
                         size_t row_numel)
      : x_(x), y_(y), lod_(lod), lod_count_(lod_count), row_numel_(row_numel) {}

  HOSTDEVICE void operator()(size_t idx_x) const {
    auto row_idx_x = idx_x / row_numel_;
    auto lod_idx = math::UpperBound(lod_, lod_count_, row_idx_x);
    auto row_idx_y = lod_[lod_idx - 1] + (lod_[lod_idx] - 1 - row_idx_x);
    auto idx_y = row_idx_y * row_numel_ + idx_x % row_numel_;
    y_[idx_y] = x_[idx_x];
  }

  const T *x_;
  T *y_;
  const size_t *lod_;
  size_t lod_count_;
  size_t row_numel_;
};

template <typename DeviceContext, typename T>
class SequenceReverseOpKernel : public framework::OpKernel<T> {
  using LoDTensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &x = *ctx.Input<LoDTensor>("X");
    auto *y = ctx.Output<LoDTensor>("Y");

    PADDLE_ENFORCE_EQ(x.lod().size(), 1,
                      "SequenceReverse Op only support one level lod.");

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    const size_t *lod;
    size_t lod_count = x.lod()[0].size();

#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      lod = x.lod()[0].CUDAData(ctx.GetPlace());
    } else {
#endif
      lod = x.lod()[0].data();
#ifdef PADDLE_WITH_CUDA
    }
#endif

    size_t limit = static_cast<size_t>(x.numel());
    size_t row_numel = static_cast<size_t>(limit / x.dims()[0]);
    auto *x_data = x.data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());

    PADDLE_ENFORCE_NE(x_data, y_data,
                      "SequenceReverse Op does not support in-place operation");

    SequenceReverseFunctor<T> functor(x_data, y_data, lod, lod_count,
                                      row_numel);
    platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
    for_range(functor);
  }
};

class SequenceReverseGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("sequence_reverse");
    op->SetInput("X", OutputGrad("Y"));
    op->SetOutput("Y", InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

}  // namespace operators
}  // namespace paddle