detection.py 10.2 KB
Newer Older
C
chengduoZH 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

from ..layer_helper import LayerHelper
C
chengduoZH 已提交
19 20 21 22 23 24 25 26
from ..param_attr import ParamAttr
from ..framework import Variable
from layer_function_generator import autodoc
from tensor import concat
from ops import reshape
from ..nets import img_conv_with_bn
from nn import transpose
import math
27

C
chengduoZH 已提交
28 29 30 31
__all__ = [
    'detection_output',
    'multi_box_head',
]
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


def detection_output(scores,
                     loc,
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
    **Detection Output Layer**

    This layer applies the NMS to the output of network and computes the 
    predict bounding box location. The output's shape of this layer could
    be zero if there is no valid bounding box.

    Args:
        scores(Variable): A 3-D Tensor with shape [N, C, M] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        The detected bounding boxes which are a Tensor.

    Examples:
        .. code-block:: python

        pb = layers.data(name='prior_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        pbv = layers.data(name='prior_box_var', shape=[10, 4],
                          append_batch_size=False, dtype='float32')
        loc = layers.data(name='target_box', shape=[21, 4],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 21, 10],
                          append_batch_size=False, dtype='float32')
        nmsed_outs = fluid.layers.detection_output(scores=scores,
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """

    helper = LayerHelper("detection_output", **locals())
    decoded_box = helper.create_tmp_variable(dtype=loc.dtype)
    helper.append_op(
        type="box_coder",
        inputs={
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': loc
        },
        outputs={'OutputBox': decoded_box},
        attrs={'code_type': 'decode_center_size'})
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)

    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
    return nmsed_outs
C
chengduoZH 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271


def multi_box_head(inputs,
                   num_classes,
                   min_sizes=None,
                   max_sizes=None,
                   min_ratio=None,
                   max_ratio=None,
                   aspect_ratios=None,
                   flip=False,
                   share_location=True,
                   kernel_size=1,
                   pad=1,
                   stride=1,
                   use_batchnorm=False,
                   base_size=None,
                   name=None):
    """
    **Multi Box Head**

    input many Variable, and return mbox_loc, mbox_conf

    Args:
       inputs(list): The list of input Variables, the format
            of all Variables is NCHW.
       num_classes(int): The number of calss.
       min_sizes(list, optional, default=None): The length of
            min_size is used to compute the the number of prior box.
            If the min_size is None, it will be computed according
            to min_ratio and max_ratio.
       max_sizes(list, optional, default=None): The length of max_size
            is used to compute the the number of prior box.
       min_ratio(int): If the min_sizes is None, min_ratio and min_ratio
            will be used to compute the min_sizes and max_sizes.
       max_ratio(int): If the min_sizes is None, min_ratio and min_ratio
            will be used to compute the min_sizes and max_sizes.
       aspect_ratios(list): The number of the aspect ratios is used to
            compute the number of prior box.
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
       flip(bool, optional, default=False): Whether to flip
            aspect ratios.
       name(str, optional, None): Name of the prior box layer.

    Returns:

        mbox_loc(Variable): the output prior boxes of PriorBoxOp. The layout is
             [num_priors, 4]. num_priors is the total box count of each
              position of inputs.
        mbox_conf(Variable): the expanded variances of PriorBoxOp. The layout
             is [num_priors, 4]. num_priors is the total box count of each
             position of inputs

    Examples:
        .. code-block:: python


    """

    assert isinstance(inputs, list), 'inputs should be a list.'

    if min_sizes is not None:
        assert len(inputs) == len(min_sizes)

    if max_sizes is not None:
        assert len(inputs) == len(max_sizes)

    if min_sizes is None:
        # if min_sizes is None, min_sizes and max_sizes
        #  will be set according to max_ratio and min_ratio
        assert max_ratio is not None and min_ratio is not None
        min_sizes = []
        max_sizes = []
        num_layer = len(inputs)
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

    if aspect_ratios is not None:
        assert len(inputs) == len(aspect_ratios)

    mbox_locs = []
    mbox_confs = []
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
        if type(min_size) is not list:
            min_size = [min_size]

        max_size = []
        if max_sizes is not None:
            max_size = max_sizes[i]
            if type(max_size) is not list:
                max_size = [max_size]
            if max_size:
                assert len(max_size) == len(
                    min_size), "max_size and min_size should have same length."

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
            if type(aspect_ratio) is not list:
                aspect_ratio = [aspect_ratio]

        num_priors_per_location = 0
        if max_sizes is not None:
            num_priors_per_location = len(min_size) + len(aspect_ratio) * len(
                min_size) + len(max_size)
        else:
            num_priors_per_location = len(min_size) + len(aspect_ratio) * len(
                min_size)
        if flip:
            num_priors_per_location += len(aspect_ratio) * len(min_size)

        # mbox_loc
        num_loc_output = num_priors_per_location * 4
        if share_location:
            num_loc_output *= num_classes

        mbox_loc = img_conv_with_bn(
            input=input,
            conv_num_filter=num_loc_output,
            conv_padding=pad,
            conv_stride=stride,
            conv_filter_size=kernel_size,
            conv_with_batchnorm=use_batchnorm)
        mbox_loc = transpose(mbox_loc, perm=[0, 2, 3, 1])
        mbox_locs.append(mbox_loc)

        #    get the number of prior box
        num_conf_output = num_priors_per_location * num_classes
        conf_loc = img_conv_with_bn(
            input=input,
            conv_num_filter=num_conf_output,
            conv_padding=pad,
            conv_stride=stride,
            conv_filter_size=kernel_size,
            conv_with_batchnorm=use_batchnorm)
        conf_loc = transpose(conf_loc, perm=[0, 2, 3, 1])
        mbox_confs.append(conf_loc)

    return mbox_locs, mbox_confs