test_sample_logits.py 14.5 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest


class Sampler(object):
    def __init__(self, range, seed):
        self.range_ = range
        self.seed_ = seed
        np.random.seed(self.seed_)

    def sample(self):
        rasie("No Implementation!")

    def probability(self, value):
        raise ("No Implementation!")


class LogUniformSampler(Sampler):
    def __init__(self, range, seed):
        super(LogUniformSampler, self).__init__(range, seed)
        self.log_range_ = np.log(self.range_ + 1)

    def sample(self):
        value = int(np.exp(np.random.uniform(0.0, self.log_range_)) - 1)
        return value % self.range_

    def probability(self, value):
        return np.log((value + 2.0) / (value + 1.0)) / self.log_range_


def adjust_prob(prob, num_samples, num_tries):
    if num_samples == num_tries:
        return prob * num_samples
    else:
        return -np.expm1(num_tries * np.log1p(-prob))


def take_along_axis1(array, index):
    out = np.zeros_like(index, dtype=array.dtype)
    n_row, n_col = index.shape
    for i in range(n_row):
        for j in range(n_col):
            out[i, j] = array[i, index[i, j]]
    return out


def sample_prob(sampler, num_samples, label):
    batch_size, num_true = label.shape
    num_sampled_classes = num_samples + num_true

    samples = np.zeros((batch_size, num_sampled_classes), dtype=np.int64)
    probabilities = np.zeros(
        (batch_size, num_sampled_classes), dtype=np.float64)

    tmp_samples = set()
    num_tries = 0
    j = 0
    while j < num_true:
        for i in range(batch_size):
            samples[i, j] = label[i, j]
            probabilities[i, j] = sampler.probability(label[i, j])
        j += 1
    while j < num_sampled_classes:
        v = sampler.sample()
        num_tries += 1
        if v not in tmp_samples:
            tmp_samples.add(v)
            for i in range(batch_size):
                samples[i, j] = v
                probabilities[i, j] = sampler.probability(v)
            j += 1
    for k in range(num_sampled_classes):
        for i in range(batch_size):
            probabilities[i, k] = adjust_prob(probabilities[i, k], num_samples,
                                              num_tries)
    return (samples, probabilities)


def compute_remove_accidental_hits(sampled_logits, samples, num_true):
    batch_size, num_sampled_classes = samples.shape
    for i in range(batch_size):
        true_labels = set(samples[i, np.arange(num_true)])
        for j in range(num_true, num_sampled_classes):
            if samples[i, j] in true_labels:
                sampled_logits[i, j] -= 1e20


def sample_logits(logits,
                  label,
                  num_samples,
                  seed,
                  remove_accidental_hits,
                  use_custom_samples,
                  custom_samples=None,
                  custom_probabilities=None):
    batch_size, num_classes = logits.shape
    num_true = label.shape[1]
    num_sampled_classes = num_true + num_samples

    if use_custom_samples:
        samples = custom_samples
        probabilities = custom_probabilities
    else:
        sampler = LogUniformSampler(num_classes, seed)
        samples, probabilities = sample_prob(sampler, num_samples, label)
    sampled_logits = take_along_axis1(logits, samples)

    #print(samples)
    #print(probabilities)
    #print(sampled_logits)
    if remove_accidental_hits:
        compute_remove_accidental_hits(sampled_logits, samples, num_true)
    sampled_logits -= np.log(probabilities)
    sampled_label = np.tile(np.arange(num_true), (batch_size, 1))
    return (sampled_logits, samples, sampled_label, probabilities)


class TestSampleLogitsOp(OpTest):
    '''
    Test SampleLogitsOp, but with random results precomputed
    in python and just test the non-random part.
    '''

    def generate_data(self, logits, label, num_samples, seed,
                      remove_accidental_hits, use_custom_samples,
                      custom_samples, custom_probabilities):
        self.attrs = {
            'num_samples': num_samples,
            'use_custom_samples': use_custom_samples,
            'remove_accidental_hits': remove_accidental_hits,
            'seed': seed
        }
        self.inputs = {
            'Logits': logits,
            'Label': label,
            'CustomSamples': custom_samples,
            'CustomProbabilities': custom_probabilities
        }

    def set_data(self, batch_size, num_classes, num_true, num_samples, seed,
                 remove_accidental_hits):
        logits = np.random.randn(batch_size, num_classes)
        label = np.stack([
            np.random.choice(
                range(0, num_classes), num_true, replace=False)
            for _ in range(batch_size)
        ])
        sampler = LogUniformSampler(num_classes, seed)
        custom_samples, custom_probabilities = \
            sample_prob(sampler, num_samples, label)
        use_custom_samples = True
        remove_accidental_hits = remove_accidental_hits
        self.generate_data(logits, label, num_samples, seed,
                           remove_accidental_hits, use_custom_samples,
                           custom_samples, custom_probabilities)

    def compute(self):
        out = sample_logits(self.inputs["Logits"], self.inputs["Label"],
                            self.attrs["num_samples"], self.attrs["seed"],
                            self.attrs["remove_accidental_hits"],
                            self.attrs["use_custom_samples"],
                            self.inputs["CustomSamples"],
                            self.inputs["CustomProbabilities"])

        self.outputs = {
            'SampledLogits': out[0],
            'Samples': out[1],
            'SampledLabel': out[2],
            'Probabilities': out[3]
        }

    def setUp(self):
        self.op_type = 'sample_logits'
        batch_size = 5
        num_classes = 20
        num_true = 5
        num_samples = 10
        seed = 10
        remove_accidental_hits = True
        self.set_data(batch_size, num_classes, num_true, num_samples, seed,
                      remove_accidental_hits)
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass
        self.check_grad(
            ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02)


class TestSampleLogitsOp2(TestSampleLogitsOp):
    def setUp(self):
        self.op_type = 'sample_logits'
        batch_size = 5
        num_classes = 20
        num_true = 5
        num_samples = 10
        seed = 10
        remove_accidental_hits = False
        self.set_data(batch_size, num_classes, num_true, num_samples, seed,
                      remove_accidental_hits)
        self.compute()


class TestSampleLogitsOp3(TestSampleLogitsOp):
    def setUp(self):
        self.op_type = 'sample_logits'
        batch_size = 5
        num_classes = 100
        num_true = 5
        num_samples = 25
        seed = 10
        remove_accidental_hits = True
        self.set_data(batch_size, num_classes, num_true, num_samples, seed,
                      remove_accidental_hits)
        self.compute()


class TestSampleLogitsOp4(TestSampleLogitsOp):
    def setUp(self):
        self.op_type = 'sample_logits'
        batch_size = 5
        num_classes = 100
        num_true = 5
        num_samples = 25
        seed = 10
        remove_accidental_hits = False
        self.set_data(batch_size, num_classes, num_true, num_samples, seed,
                      remove_accidental_hits)
        self.compute()


class TestSampleLogitsOpV2(OpTest):
    '''
    Test SampleLogitsOp, but with random results precomputed
    in C++ and copied to python and just test the non-random part.
    '''

    def generate_data(self, logits, label, num_samples, seed,
                      remove_accidental_hits, use_custom_samples):
        self.attrs = {
            'num_samples': num_samples,
            'use_custom_samples': use_custom_samples,
            'remove_accidental_hits': remove_accidental_hits,
            'seed': seed
        }
        self.inputs = {'Logits': logits, 'Label': label}

    def set_data(self, num_classes, num_samples, seed, remove_accidental_hits):
        label = np.array([[6, 12, 15, 5, 1], [0, 9, 4, 1, 10],
                          [0, 2, 10, 16, 13], [14, 4, 7, 2, 1],
                          [3, 18, 11, 8, 14]])
        batch_size, num_true = label.shape
        use_custom_samples = False

        num_sampled_classes = num_samples + num_true
        logits = np.random.randn(batch_size, num_classes)

        remove_accidental_hits = remove_accidental_hits
        self.generate_data(logits, label, num_samples, seed,
                           remove_accidental_hits, use_custom_samples)

        # python and c++ use different random generator
        # use fetched samples from c++ for python code
        self.fetched_samples = np.array(
            [[6, 12, 15, 5, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4],
             [0, 9, 4, 1, 10, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4],
             [0, 2, 10, 16, 13, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4],
             [14, 4, 7, 2, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4],
             [3, 18, 11, 8, 14, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4]])
        fectched_num_tries = 21

        probabilities = np.zeros(
            (batch_size, num_sampled_classes), dtype=np.float64)

        sampler = LogUniformSampler(num_classes, seed)
        for j in range(num_sampled_classes):
            for i in range(batch_size):
                probabilities[i, j] = sampler.probability(self.fetched_samples[
                    i, j])
                probabilities[i, j] = adjust_prob(
                    probabilities[i, j], num_samples, fectched_num_tries)
        self.probabilities = probabilities

    def compute(self):
        out = sample_logits(self.inputs["Logits"], self.inputs["Label"],
                            self.attrs["num_samples"], self.attrs["seed"],
                            self.attrs["remove_accidental_hits"], True,
                            self.fetched_samples, self.probabilities)
        self.outputs = {
            'SampledLogits': out[0],
            'Samples': out[1],
            'SampledLabel': out[2],
            'Probabilities': out[3]
        }

    def setUp(self):
        self.op_type = 'sample_logits'
        num_samples = 10
        num_classes = 20
        seed = 10
        remove_accidental_hits = True

        self.set_data(num_classes, num_samples, seed, remove_accidental_hits)
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass
        self.check_grad(
            ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02)


class TestSampleLogitsOpV3(OpTest):
    '''
    Test SampleLogitsOp, but with random results precomputed
    in C++ and copied to python and just test the non-random part.
    '''

    def generate_data(self, logits, label, num_samples, seed,
                      remove_accidental_hits, use_custom_samples):
        self.attrs = {
            'num_samples': num_samples,
            'use_custom_samples': use_custom_samples,
            'remove_accidental_hits': remove_accidental_hits,
            'seed': seed
        }
        self.inputs = {'Logits': logits, 'Label': label}

    def set_data(self, num_classes, num_samples, seed, remove_accidental_hits):
X
xuezhong 已提交
352 353 354 355 356 357 358 359 360 361
        label = [52, 2, 2, 17, 96, 2, 17, 96, 37, 2]
        samples = [
            3, 12, 74, 28, 1, 79, 2, 42, 8, 13, 0, 18, 88, 49, 14, 46, 39, 57,
            26, 75, 9, 50, 16, 66, 6, 23, 5, 11, 17, 54, 35, 20, 53, 10, 47, 80,
            38, 7, 4, 31, 15, 19, 58, 22, 34, 41, 73, 62, 95, 25, 70, 37, 30,
            65, 27, 51, 43, 32, 99, 21, 56, 29, 40, 69, 55, 98, 77, 67, 33, 89,
            63, 81, 59, 48, 91, 68, 72, 61, 52, 86
        ]

        self.fetched_samples = np.array([[x] + samples for x in label])
X
xuezhong 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        fectched_num_tries = 323

        label = self.fetched_samples[:, 0:1]
        batch_size, num_true = label.shape
        use_custom_samples = False

        #import pdb; pdb.set_trace()
        num_sampled_classes = num_samples + num_true
        logits = np.random.randn(batch_size, num_classes)

        remove_accidental_hits = remove_accidental_hits
        self.generate_data(logits, label, num_samples, seed,
                           remove_accidental_hits, use_custom_samples)

        # python and c++ use different random generator
        # use fetched samples from c++ for python code
        probabilities = np.zeros(
            (batch_size, num_sampled_classes), dtype=np.float64)

        sampler = LogUniformSampler(num_classes, seed)
        for j in range(num_sampled_classes):
            for i in range(batch_size):
                probabilities[i, j] = sampler.probability(self.fetched_samples[
                    i, j])
                probabilities[i, j] = adjust_prob(
                    probabilities[i, j], num_samples, fectched_num_tries)
        self.probabilities = probabilities

    def compute(self):
        out = sample_logits(self.inputs["Logits"], self.inputs["Label"],
                            self.attrs["num_samples"], self.attrs["seed"],
                            self.attrs["remove_accidental_hits"], True,
                            self.fetched_samples, self.probabilities)
        self.outputs = {
            'SampledLogits': out[0],
            'Samples': out[1],
            'SampledLabel': out[2],
            'Probabilities': out[3]
        }

    def setUp(self):
        self.op_type = 'sample_logits'
        num_samples = 80
        num_classes = 100
        seed = 123
        remove_accidental_hits = True

        self.set_data(num_classes, num_samples, seed, remove_accidental_hits)
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass
        self.check_grad(
            ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02)


if __name__ == '__main__':
    unittest.main()