infer.py 7.0 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import glob
import numpy as np
from PIL import Image
import paddle
from paddle.distributed import ParallelEnv
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.visualizer import visualize_results
from ppdet.utils.cli import ArgsParser
from ppdet.data.reader import create_reader
from ppdet.utils.checkpoint import load_dygraph_ckpt
from ppdet.utils.eval_utils import get_infer_results
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
    parser.add_argument(
        "--use_vdl",
        type=bool,
        default=False,
        help="whether to record the data to VisualDL.")
    parser.add_argument(
        '--vdl_log_dir',
        type=str,
        default="vdl_log_dir/image",
        help='VisualDL logging directory for image.')
    args = parser.parse_args()
    return args


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    image_name = os.path.split(image_path)[-1]
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


def run(FLAGS, cfg):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    dataset = cfg.TestReader['dataset']
    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    dataset.set_images(test_images)

    # TODO: support other metrics
    imid2path = dataset.get_imid2path()

    from ppdet.utils.coco_eval import get_category_info
    anno_file = dataset.get_anno()
    with_background = dataset.with_background
    use_default_label = dataset.use_default_label
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    # Init Model
    model = load_dygraph_ckpt(model, ckpt=cfg.weights)

    # Data Reader
K
Kaipeng Deng 已提交
147
    test_reader = create_reader(cfg.TestDataset, cfg.TestReader)
W
wangguanzhong 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    # Run Infer 
    for iter_id, data in enumerate(test_reader()):
        # forward
        model.eval()
        outs = model(data, cfg.TestReader['inputs_def']['fields'], 'infer')

        batch_res = get_infer_results([outs], outs.keys(), clsid2catid)
        logger.info('Infer iter {}'.format(iter_id))
        bbox_res = None
        mask_res = None

        im_ids = outs['im_id']
        bbox_num = outs['bbox_num']
        start = 0
        for i, im_id in enumerate(im_ids):
            im_id = im_ids[i]
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            end = start + bbox_num[i]

            # use VisualDL to log original image
            if FLAGS.use_vdl:
                original_image_np = np.array(image)
                vdl_writer.add_image(
                    "original/frame_{}".format(vdl_image_frame),
                    original_image_np, vdl_image_step)

            if 'bbox' in batch_res:
                bbox_res = batch_res['bbox'][start:end]
            if 'mask' in batch_res:
                mask_res = batch_res['mask'][start:end]

            image = visualize_results(image, bbox_res, mask_res,
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold)

            # use VisualDL to log image with bbox
            if FLAGS.use_vdl:
                infer_image_np = np.array(image)
                vdl_writer.add_image("bbox/frame_{}".format(vdl_image_frame),
                                     infer_image_np, vdl_image_step)
                vdl_image_step += 1
                if vdl_image_step % 10 == 0:
                    vdl_image_step = 0
                    vdl_image_frame += 1

            # save image with detection
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
            image.save(save_name, quality=95)
            start = end


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

    run(FLAGS, cfg)


if __name__ == '__main__':
    main()