lod_reset_op.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
24 25 26 27 28
class LoDResetKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    auto* in = ctx.Input<framework::LoDTensor>("X");
29 30 31
    auto* lod_t = ctx.Input<framework::LoDTensor>("Y");

    out->ShareDataWith(*in);
32 33 34

    std::vector<int> level0;
    if (lod_t) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
      if (lod_t->lod().size() > 0) {
        auto y_lod = lod_t->lod();
        auto last_level = y_lod[y_lod.size() - 1];
        PADDLE_ENFORCE_EQ(last_level.back(), in->dims()[0],
                          "Last value of `Y`'s last level LoD should be equal "
                          "to the first dimension of `X`");
        out->set_lod(y_lod);
        return;  // early return, since lod already set
      } else {
        auto* lod = lod_t->data<int>();
        if (platform::is_gpu_place(ctx.GetPlace())) {
          framework::Tensor lod_cpu;
          framework::TensorCopy(*lod_t, platform::CPUPlace(),
                                ctx.device_context(), &lod_cpu);
          lod = lod_cpu.data<int>();
        }
        level0 = std::vector<int>(lod, lod + lod_t->numel());
52 53 54 55 56
      }
    } else {
      level0 = ctx.Attr<std::vector<int>>("target_lod");
    }

57 58 59 60 61 62 63
    PADDLE_ENFORCE_GT(level0.size(), 1UL,
                      "Size of target LoD should be greater than 1.");
    PADDLE_ENFORCE_EQ(level0[0], 0,
                      "Target LoD should be a vector starting from 0.");
    PADDLE_ENFORCE_EQ(level0.back(), in->dims()[0],
                      "Target LoD should be a vector end with the "
                      "first dimension of Input(X).");
64 65 66 67 68
    for (size_t i = 0; i < level0.size() - 1; ++i) {
      PADDLE_ENFORCE(level0[i + 1] > level0[i],
                     "Target LoD should be an ascending vector.");
    }

Y
Yibing Liu 已提交
69
    // cast level0 to size_t
70 71 72 73 74 75 76 77 78
    std::vector<size_t> ulevel0(level0.size(), 0);
    std::transform(level0.begin(), level0.end(), ulevel0.begin(),
                   [](int a) { return static_cast<size_t>(a); });
    framework::LoD target_lod;
    target_lod.push_back(ulevel0);
    out->set_lod(target_lod);
  }
};

Q
QI JUN 已提交
79
template <typename DeviceContext, typename T>
80 81 82 83 84 85 86 87 88 89 90
class LoDResetGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    d_x->ShareDataWith(*d_out);
  }
};
}  // namespace operators
}  // namespace paddle