“6d6efafeeb59b6fdf6587f9808ed5aadb8db98d8”上不存在“...fluid/operators/git@gitcode.net:paddlepaddle/Paddle.git”
fusion_seqpool_concat_op.cc 4.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/fused/fusion_seqpool_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"

namespace paddle {
namespace operators {

void FusionSeqPoolConcatOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
                    "Inputs(X) of FusionSeqPoolConcatOp should be empty.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Output(Out) of FusionSeqPoolConcatOp should not be null.");
  int axis = ctx->Attrs().Get<int>("axis");
  PADDLE_ENFORCE_EQ(axis, 1,
                    "FusionSeqPoolConcatOp only supports concat axis=1 yet.");

  auto ins_dims = ctx->GetInputsDim("X");
  const size_t n = ins_dims.size();
  PADDLE_ENFORCE_GT(n, 0UL, "Input tensors count should > 0.");
  if (n == 1) {
    LOG(WARNING) << "Only have one input, may waste memory";
  }

  // The output height should be confirmed in Compute,
  // since input lod is not accessible here.
  PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2UL,
                    "The dims size of first input should be 2.");
  ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)});
}

framework::OpKernelType FusionSeqPoolConcatOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]), ctx.GetPlace());
}

void FusionSeqPoolConcatOpMaker::Make() {
  AddInput("X", "(LoDTensor) Input tensors of this operator.").AsDuplicable();
  AddOutput("Out", "(LoDTensor) Output tensor of concat operator.");
  AddAttr<std::string>("pooltype",
                       "(string, default 'AVERAGE') some of the pooling "
                       "pooltype of SequencePoolOp.")
      .SetDefault("SUM")
      .InEnum({"AVERAGE", "SUM", "SQRT"});
  AddAttr<int>("axis",
               "The axis along which the input tensors will be concatenated.")
      .SetDefault(1);
  AddComment(R"DOC(
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
)DOC");
}

template <typename T>
class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
T
tensor-tang 已提交
75
    std::string pooltype = ctx.Attr<std::string>("pooltype");
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    auto x0_lod = ins[0]->lod();
    auto x0_dims = ins[0]->dims();
    auto y_dims = out->dims();
    size_t bs = x0_lod[0].size() - 1;
    out->Resize({static_cast<int64_t>(bs), y_dims[1]});
    framework::LoD y_lod(1);
    y_lod[0].resize(bs + 1);
    for (size_t i = 0; i <= bs; ++i) {
      y_lod[0][i] = i;
    }
    out->set_lod(y_lod);
    auto place = ctx.GetPlace();
    T* y_data = out->mutable_data<T>(place);

    int w = ins[0]->numel() / x0_dims[0];
    PADDLE_ENFORCE_EQ(y_dims[1] % w, 0,
                      "The output of dims[1] should be dividable of w");
    jit::seq_pool_attr_t attr(w, jit::SeqPoolType::kSum);
T
tensor-tang 已提交
94 95 96 97 98
    if (pooltype == "AVERAGE") {
      attr.type = jit::SeqPoolType::kAvg;
    } else if (pooltype == "SQRT") {
      attr.type = jit::SeqPoolType::kSqrt;
    }
T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    auto seqpool =
        jit::Get<jit::kSeqPool, jit::SeqPoolTuples<T>, platform::CPUPlace>(
            attr);
    size_t n = ins.size();
    for (size_t i = 0; i < n; ++i) {
      auto x_dims = ins[i]->dims();
      auto x_lod = ins[i]->lod()[0];
      const T* src = ins[i]->data<T>();
      T* dst = y_data + i * w;
      PADDLE_ENFORCE_EQ(static_cast<int>(ins[i]->numel() / x_dims[0]), w,
                        "Width of all inputs should be equal.");
      PADDLE_ENFORCE_EQ(x_lod.size(), bs + 1,
                        "Batchsize of all inputs should be equal.");
      for (size_t j = 0; j < bs; ++j) {
        attr.h = static_cast<int>(x_lod[j + 1] - x_lod[j]);
        seqpool(src, dst, &attr);
        dst += n * w;
        src += attr.h * attr.w;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqpool_concat, ops::FusionSeqPoolConcatOp,
                  ops::FusionSeqPoolConcatOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(fusion_seqpool_concat,
                       ops::FusionSeqPoolConcatKernel<float>,
                       ops::FusionSeqPoolConcatKernel<double>);