keypoint_postprocess.h 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

Z
zhiboniu 已提交
17
#include <math.h>
18 19 20 21 22
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>

Z
zhiboniu 已提交
23 24
namespace PaddleDetection {

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
std::vector<float> get_3rd_point(std::vector<float>& a, std::vector<float>& b);

std::vector<float> get_dir(float src_point_x, float src_point_y, float rot_rad);

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p);

cv::Mat get_affine_transform(std::vector<float>& center,
                             std::vector<float>& scale,
                             float rot,
                             std::vector<int>& output_size,
                             int inv);

void transform_preds(std::vector<float>& coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<int>& dim,
Z
zhiboniu 已提交
43 44
                     std::vector<float>& target_coords,
                     bool affine = false);
45 46 47 48 49 50 51 52 53 54 55 56 57

void box_to_center_scale(std::vector<int>& box,
                         int width,
                         int height,
                         std::vector<float>& center,
                         std::vector<float>& scale);

void get_max_preds(float* heatmap,
                   std::vector<int>& dim,
                   std::vector<float>& preds,
                   float* maxvals,
                   int batchid,
                   int joint_idx);
Z
zhiboniu 已提交
58

59 60 61 62 63 64 65 66 67
void get_final_preds(std::vector<float>& heatmap,
                     std::vector<int>& dim,
                     std::vector<int64_t>& idxout,
                     std::vector<int>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     std::vector<float>& preds,
                     int batchid,
                     bool DARK = true);
Z
zhiboniu 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

// Object KeyPoint Result
struct KeyPointResult {
  // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
  std::vector<float> keypoints;
  int num_joints = -1;
};

class PoseSmooth {
 public:
  explicit PoseSmooth(const int width,
                      const int height,
                      std::string filter_type = "OneEuro",
                      float alpha = 0.5,
                      float fc_d = 0.1,
                      float fc_min = 0.1,
                      float beta = 0.1,
                      float thres_mult = 0.3)
      : width(width),
        height(height),
        alpha(alpha),
        fc_d(fc_d),
        fc_min(fc_min),
        beta(beta),
        filter_type(filter_type),
        thres_mult(thres_mult){};

  // Run predictor
  KeyPointResult smooth_process(KeyPointResult* result);
  void PointSmooth(KeyPointResult* result,
                   KeyPointResult* keypoint_smoothed,
                   std::vector<float> thresholds,
                   int index);
  float OneEuroFilter(float x_cur, float x_pre, int loc);
  float smoothing_factor(float te, float fc);
  float ExpSmoothing(float x_cur, float x_pre, int loc = 0);

 private:
  int width = 0;
  int height = 0;
  float alpha = 0.;
  float fc_d = 1.;
  float fc_min = 0.;
  float beta = 1.;
  float thres_mult = 1.;
  std::string filter_type = "OneEuro";
  std::vector<float> thresholds = {0.005,
                                   0.005,
                                   0.005,
                                   0.005,
                                   0.005,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01,
                                   0.01};
  KeyPointResult x_prev_hat;
  KeyPointResult dx_prev_hat;
};
}  // namespace PaddleDetection