ssd_loss.py 8.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from ppdet.core.workspace import register
from ..ops import bipartite_match, box_coder, iou_similarity

__all__ = ['SSDLoss']


@register
class SSDLoss(nn.Layer):
    def __init__(self,
                 match_type='per_prediction',
                 overlap_threshold=0.5,
                 neg_pos_ratio=3.0,
                 neg_overlap=0.5,
                 loc_loss_weight=1.0,
                 conf_loss_weight=1.0):
        super(SSDLoss, self).__init__()
        self.match_type = match_type
        self.overlap_threshold = overlap_threshold
        self.neg_pos_ratio = neg_pos_ratio
        self.neg_overlap = neg_overlap
        self.loc_loss_weight = loc_loss_weight
        self.conf_loss_weight = conf_loss_weight

    def _label_target_assign(self,
                             gt_label,
                             matched_indices,
                             neg_mask=None,
                             mismatch_value=0):
        gt_label = gt_label.numpy()
        matched_indices = matched_indices.numpy()
        if neg_mask is not None:
            neg_mask = neg_mask.numpy()

        batch_size, num_priors = matched_indices.shape
        trg_lbl = np.ones((batch_size, num_priors, 1)).astype('int32')
        trg_lbl *= mismatch_value
        trg_lbl_wt = np.zeros((batch_size, num_priors, 1)).astype('float32')

        for i in range(batch_size):
            col_ids = np.where(matched_indices[i] > -1)
            col_val = matched_indices[i][col_ids]
            trg_lbl[i][col_ids] = gt_label[i][col_val]
            trg_lbl_wt[i][col_ids] = 1.0

        if neg_mask is not None:
            trg_lbl_wt += neg_mask[:, :, np.newaxis]

        return paddle.to_tensor(trg_lbl), paddle.to_tensor(trg_lbl_wt)

    def _bbox_target_assign(self, encoded_box, matched_indices):
        encoded_box = encoded_box.numpy()
        matched_indices = matched_indices.numpy()

        batch_size, num_priors = matched_indices.shape
        trg_bbox = np.zeros((batch_size, num_priors, 4)).astype('float32')
        trg_bbox_wt = np.zeros((batch_size, num_priors, 1)).astype('float32')

        for i in range(batch_size):
            col_ids = np.where(matched_indices[i] > -1)
            col_val = matched_indices[i][col_ids]
            for v, c in zip(col_val.tolist(), col_ids[0]):
                trg_bbox[i][c] = encoded_box[i][v][c]
            trg_bbox_wt[i][col_ids] = 1.0

        return paddle.to_tensor(trg_bbox), paddle.to_tensor(trg_bbox_wt)

    def _mine_hard_example(self,
                           conf_loss,
                           matched_indices,
                           matched_dist,
                           neg_pos_ratio=3.0,
                           neg_overlap=0.5):
        pos = (matched_indices > -1).astype(conf_loss.dtype)
        num_pos = pos.sum(axis=1, keepdim=True)
        neg = (matched_dist < neg_overlap).astype(conf_loss.dtype)

        conf_loss = conf_loss * (1.0 - pos) * neg
        loss_idx = conf_loss.argsort(axis=1, descending=True)
        idx_rank = loss_idx.argsort(axis=1)
        num_negs = []
        for i in range(matched_indices.shape[0]):
            cur_idx = loss_idx[i]
            cur_num_pos = num_pos[i]
            num_neg = paddle.clip(cur_num_pos * neg_pos_ratio, max=pos.shape[1])
            num_negs.append(num_neg)
        num_neg = paddle.stack(num_negs, axis=0).expand_as(idx_rank)
        neg_mask = (idx_rank < num_neg).astype(conf_loss.dtype)
        return neg_mask

    def forward(self, inputs, targets, anchors):
        boxes = paddle.concat(inputs['boxes'], axis=1)
        scores = paddle.concat(inputs['scores'], axis=1)
        prior_boxes = paddle.concat(anchors, axis=0)
        gt_box = targets['gt_bbox']
        gt_label = targets['gt_class'].unsqueeze(-1)
        batch_size, num_priors, num_classes = scores.shape

        def _reshape_to_2d(x):
            return paddle.flatten(x, start_axis=2)

        # 1. Find matched bounding box by prior box.
        #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
        #   1.2 Compute matched bounding box by bipartite matching algorithm.
        matched_indices = []
        matched_dist = []
        for i in range(gt_box.shape[0]):
            iou = iou_similarity(gt_box[i], prior_boxes)
            matched_indice, matched_d = bipartite_match(iou, self.match_type,
                                                        self.overlap_threshold)
            matched_indices.append(matched_indice)
            matched_dist.append(matched_d)
        matched_indices = paddle.concat(matched_indices, axis=0)
        matched_indices.stop_gradient = True
        matched_dist = paddle.concat(matched_dist, axis=0)
        matched_dist.stop_gradient = True

        # 2. Compute confidence for mining hard examples
        # 2.1. Get the target label based on matched indices
        target_label, _ = self._label_target_assign(gt_label, matched_indices)
        confidence = _reshape_to_2d(scores)
        # 2.2. Compute confidence loss.
        # Reshape confidence to 2D tensor.
        target_label = _reshape_to_2d(target_label).astype('int64')
        conf_loss = F.softmax_with_cross_entropy(confidence, target_label)
        conf_loss = paddle.reshape(conf_loss, [batch_size, num_priors])

        # 3. Mining hard examples
        neg_mask = self._mine_hard_example(
            conf_loss,
            matched_indices,
            matched_dist,
            neg_pos_ratio=self.neg_pos_ratio,
            neg_overlap=self.neg_overlap)

        # 4. Assign classification and regression targets
        # 4.1. Encoded bbox according to the prior boxes.
        prior_box_var = paddle.to_tensor(
            np.array(
                [0.1, 0.1, 0.2, 0.2], dtype='float32')).reshape(
                    [1, 4]).expand_as(prior_boxes)
        encoded_bbox = []
        for i in range(gt_box.shape[0]):
            encoded_bbox.append(
                box_coder(
                    prior_box=prior_boxes,
                    prior_box_var=prior_box_var,
                    target_box=gt_box[i],
                    code_type='encode_center_size'))
        encoded_bbox = paddle.stack(encoded_bbox, axis=0)
        # 4.2. Assign regression targets
        target_bbox, target_loc_weight = self._bbox_target_assign(
            encoded_bbox, matched_indices)
        # 4.3. Assign classification targets
        target_label, target_conf_weight = self._label_target_assign(
            gt_label, matched_indices, neg_mask=neg_mask)

        # 5. Compute loss.
        # 5.1 Compute confidence loss.
        target_label = _reshape_to_2d(target_label).astype('int64')
        conf_loss = F.softmax_with_cross_entropy(confidence, target_label)

        target_conf_weight = _reshape_to_2d(target_conf_weight)
        conf_loss = conf_loss * target_conf_weight * self.conf_loss_weight

        # 5.2 Compute regression loss.
        location = _reshape_to_2d(boxes)
        target_bbox = _reshape_to_2d(target_bbox)

        loc_loss = F.smooth_l1_loss(location, target_bbox, reduction='none')
        loc_loss = paddle.sum(loc_loss, axis=-1, keepdim=True)
        target_loc_weight = _reshape_to_2d(target_loc_weight)
        loc_loss = loc_loss * target_loc_weight * self.loc_loss_weight

        # 5.3 Compute overall weighted loss.
        loss = conf_loss + loc_loss
        loss = paddle.reshape(loss, [batch_size, num_priors])
        loss = paddle.sum(loss, axis=1, keepdim=True)
        normalizer = paddle.sum(target_loc_weight)
        loss = paddle.sum(loss / normalizer)

        return loss