iou_loss.py 2.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ..utils import xywh2xyxy, bbox_iou, decode_yolo

__all__ = ['IouLoss']


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
        ciou_term (bool): whether to add ciou_term
        loss_square (bool): whether to square the iou term
    """

    def __init__(self,
                 loss_weight=2.5,
                 giou=False,
                 diou=False,
                 ciou=False,
                 loss_square=True):
        self.loss_weight = loss_weight
        self.giou = giou
        self.diou = diou
        self.ciou = ciou
        self.loss_square = loss_square

    def __call__(self, pbox, gbox, anchor, downsample, scale=1.):
        b = pbox.shape[0]
        pbox = decode_yolo(pbox, anchor, downsample)
        gbox = decode_yolo(gbox, anchor, downsample)
        pbox = xywh2xyxy(pbox).reshape((b, -1, 4))
        gbox = xywh2xyxy(gbox).reshape((b, -1, 4))
        iou = bbox_iou(
            pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou)
        if self.loss_square:
            loss_iou = 1 - iou * iou
        else:
            loss_iou = 1 - iou

        loss_iou = loss_iou * self.loss_weight
        return loss_iou