mask_rcnn.py 4.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from ppdet.core.workspace import register
from .meta_arch import BaseArch

__all__ = ['MaskRCNN']


@register
class MaskRCNN(BaseArch):
    __category__ = 'architecture'
    __inject__ = [
        'anchor',
        'proposal',
        'mask',
        'backbone',
        'neck',
        'rpn_head',
        'bbox_head',
        'mask_head',
        'bbox_post_process',
        'mask_post_process',
    ]

    def __init__(self,
                 anchor,
                 proposal,
                 mask,
                 backbone,
                 rpn_head,
                 bbox_head,
                 mask_head,
                 bbox_post_process,
                 mask_post_process,
                 neck=None):
        super(MaskRCNN, self).__init__()
        self.anchor = anchor
        self.proposal = proposal
        self.mask = mask
        self.backbone = backbone
        self.neck = neck
        self.rpn_head = rpn_head
        self.bbox_head = bbox_head
        self.mask_head = mask_head
        self.bbox_post_process = bbox_post_process
        self.mask_post_process = mask_post_process

    def model_arch(self):
        # Backbone
        body_feats = self.backbone(self.inputs)
        spatial_scale = 1. / 16

        # Neck
        if self.neck is not None:
            body_feats, spatial_scale = self.neck(body_feats)

        # RPN
        # rpn_head returns two list: rpn_feat, rpn_head_out 
        # each element in rpn_feats contains rpn feature on each level,
        # and the length is 1 when the neck is not applied.
        # each element in rpn_head_out contains (rpn_rois_score, rpn_rois_delta)
        rpn_feat, self.rpn_head_out = self.rpn_head(self.inputs, body_feats)

        # Anchor
        # anchor_out returns a list,
        # each element contains (anchor, anchor_var)
        self.anchor_out = self.anchor(rpn_feat)

        # Proposal RoI 
        # compute targets here when training
        rois = self.proposal(self.inputs, self.rpn_head_out, self.anchor_out)
        # BBox Head
        bbox_feat, self.bbox_head_out, self.bbox_head_feat_func = self.bbox_head(
            body_feats, rois, spatial_scale)

        rois_has_mask_int32 = None
        if self.inputs['mode'] == 'infer':
            bbox_pred, bboxes = self.bbox_head.get_prediction(
                self.bbox_head_out, rois)
            # Refine bbox by the output from bbox_head at test stage
            self.bboxes = self.bbox_post_process(bbox_pred, bboxes,
                                                 self.inputs['im_shape'],
                                                 self.inputs['scale_factor'])
        else:
            # Proposal RoI for Mask branch
            # bboxes update at training stage only
            bbox_targets = self.proposal.get_targets()[0]
            self.bboxes, rois_has_mask_int32 = self.mask(self.inputs, rois,
                                                         bbox_targets)

        # Mask Head 
        self.mask_head_out = self.mask_head(
            self.inputs, body_feats, self.bboxes, bbox_feat,
            rois_has_mask_int32, spatial_scale, self.bbox_head_feat_func)

    def get_loss(self, ):
        loss = {}

        # RPN loss
        rpn_loss_inputs = self.anchor.generate_loss_inputs(
            self.inputs, self.rpn_head_out, self.anchor_out)
        loss_rpn = self.rpn_head.get_loss(rpn_loss_inputs)
        loss.update(loss_rpn)

        # BBox loss
        bbox_targets = self.proposal.get_targets()
        loss_bbox = self.bbox_head.get_loss([self.bbox_head_out], bbox_targets)
        loss.update(loss_bbox)

        # Mask loss
        mask_targets = self.mask.get_targets()
        loss_mask = self.mask_head.get_loss(self.mask_head_out, mask_targets)
        loss.update(loss_mask)

        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})
        return loss

    def get_pred(self):
        bbox, bbox_num = self.bboxes
        output = {
            'bbox': bbox,
            'bbox_num': bbox_num,
            'mask': self.mask_head_out
        }
        return output