test_imperative_checkpoint.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
21 22
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
23 24


L
lujun 已提交
25
class SimpleImgConvPool(fluid.dygraph.Layer):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


L
lujun 已提交
74
class MNIST(fluid.dygraph.Layer):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(), 1, 20, 5, 2, 2, act="relu")

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(), 20, 50, 5, 2, 2, act="relu")

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


L
lujun 已提交
101
class TestDygraphCheckpoint(unittest.TestCase):
102 103 104 105
    def save_load_persistables(self):
        seed = 90
        epoch_num = 1

L
lujun 已提交
106
        with fluid.dygraph.guard():
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            dy_param_init_value = {}

            step = 0
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)

                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True

                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

                    dy_out = avg_loss._numpy()

                    avg_loss._backward()
                    sgd.minimize(avg_loss)
L
lujun 已提交
138
                    fluid.dygraph.save_persistables(mnist, "save_dir")
139 140 141 142 143 144
                    mnist.clear_gradients()

                    for param in mnist.parameters():
                        dy_param_init_value[param.name] = param._numpy()

                    mnist.load_dict(
L
lujun 已提交
145
                        fluid.dygraph.load_persistables(mnist, "save_dir"))
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

                    restore = mnist.parameters()

                    self.assertEqual(len(dy_param_init_value), len(restore))
                    for value in restore:
                        self.assertTrue(
                            np.allclose(value, dy_param_init_value[value.name]))
                        self.assertTrue(np.isfinite(value.all()))
                        self.assertFalse(np.isnan(value.any()))

                    step += 1

                    if step > 20:
                        break


if __name__ == '__main__':
    unittest.main()