blazeface_fpn.py 7.2 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import math
import paddle
import paddle.nn.functional as F
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec

__all__ = ['BlazeNeck']


def hard_swish(x):
    return x * F.relu6(x + 3) / 6.


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 num_groups=1,
                 act='relu',
                 conv_lr=0.1,
                 conv_decay=0.,
                 norm_decay=0.,
                 norm_type='bn',
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.act = act
        self._conv = nn.Conv2D(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            weight_attr=ParamAttr(
                learning_rate=conv_lr,
                initializer=KaimingNormal(),
                name=name + "_weights"),
            bias_attr=False)

        param_attr = ParamAttr(name=name + "_bn_scale")
        bias_attr = ParamAttr(name=name + "_bn_offset")
        if norm_type == 'sync_bn':
            self._batch_norm = nn.SyncBatchNorm(
                out_channels, weight_attr=param_attr, bias_attr=bias_attr)
        else:
            self._batch_norm = nn.BatchNorm(
                out_channels,
                act=None,
                param_attr=param_attr,
                bias_attr=bias_attr,
                use_global_stats=False,
                moving_mean_name=name + '_bn_mean',
                moving_variance_name=name + '_bn_variance')

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        if self.act == "relu":
            x = F.relu(x)
        elif self.act == "relu6":
            x = F.relu6(x)
        elif self.act == 'leaky':
            x = F.leaky_relu(x)
        elif self.act == 'hard_swish':
            x = hard_swish(x)
        return x


class FPN(nn.Layer):
    def __init__(self, in_channels, out_channels, name=None):
        super(FPN, self).__init__()
        self.conv1_fpn = ConvBNLayer(
            in_channels,
            out_channels // 2,
            kernel_size=1,
            padding=0,
            stride=1,
            act='leaky',
            name=name + '_output1')
        self.conv2_fpn = ConvBNLayer(
            in_channels,
            out_channels // 2,
            kernel_size=1,
            padding=0,
            stride=1,
            act='leaky',
            name=name + '_output2')
        self.conv3_fpn = ConvBNLayer(
            out_channels // 2,
            out_channels // 2,
            kernel_size=3,
            padding=1,
            stride=1,
            act='leaky',
            name=name + '_merge')

    def forward(self, input):
        output1 = self.conv1_fpn(input[0])
        output2 = self.conv2_fpn(input[1])
        up2 = F.upsample(
            output2, size=paddle.shape(output1)[-2:], mode='nearest')
        output1 = paddle.add(output1, up2)
        output1 = self.conv3_fpn(output1)
        return output1, output2


class SSH(nn.Layer):
    def __init__(self, in_channels, out_channels, name=None):
        super(SSH, self).__init__()
        assert out_channels % 4 == 0
        self.conv0_ssh = ConvBNLayer(
            in_channels,
            out_channels // 2,
            kernel_size=3,
            padding=1,
            stride=1,
            act=None,
            name=name + 'ssh_conv3')
        self.conv1_ssh = ConvBNLayer(
            out_channels // 2,
            out_channels // 4,
            kernel_size=3,
            padding=1,
            stride=1,
            act='leaky',
            name=name + 'ssh_conv5_1')
        self.conv2_ssh = ConvBNLayer(
            out_channels // 4,
            out_channels // 4,
            kernel_size=3,
            padding=1,
            stride=1,
            act=None,
            name=name + 'ssh_conv5_2')
        self.conv3_ssh = ConvBNLayer(
            out_channels // 4,
            out_channels // 4,
            kernel_size=3,
            padding=1,
            stride=1,
            act='leaky',
            name=name + 'ssh_conv7_1')
        self.conv4_ssh = ConvBNLayer(
            out_channels // 4,
            out_channels // 4,
            kernel_size=3,
            padding=1,
            stride=1,
            act=None,
            name=name + 'ssh_conv7_2')

    def forward(self, x):
        conv0 = self.conv0_ssh(x)
        conv1 = self.conv1_ssh(conv0)
        conv2 = self.conv2_ssh(conv1)
        conv3 = self.conv3_ssh(conv2)
        conv4 = self.conv4_ssh(conv3)
        concat = paddle.concat([conv0, conv2, conv4], axis=1)
        return F.relu(concat)


@register
@serializable
class BlazeNeck(nn.Layer):
    def __init__(self, in_channel, neck_type="None", data_format='NCHW'):
        super(BlazeNeck, self).__init__()
        self.neck_type = neck_type
        self.reture_input = False
        self._out_channels = in_channel
        if self.neck_type == 'None':
            self.reture_input = True
        if "fpn" in self.neck_type:
            self.fpn = FPN(self._out_channels[0],
                           self._out_channels[1],
                           name='fpn')
            self._out_channels = [
                self._out_channels[0] // 2, self._out_channels[1] // 2
            ]
        if "ssh" in self.neck_type:
            self.ssh1 = SSH(self._out_channels[0],
                            self._out_channels[0],
                            name='ssh1')
            self.ssh2 = SSH(self._out_channels[1],
                            self._out_channels[1],
                            name='ssh2')
            self._out_channels = [self._out_channels[0], self._out_channels[1]]

    def forward(self, inputs):
        if self.reture_input:
            return inputs
        output1, output2 = None, None
        if "fpn" in self.neck_type:
            backout_4, backout_1 = inputs
            output1, output2 = self.fpn([backout_4, backout_1])
        if self.neck_type == "only_fpn":
            return [output1, output2]
        if self.neck_type == "only_ssh":
            output1, output2 = inputs
        feature1 = self.ssh1(output1)
        feature2 = self.ssh2(output2)
        return [feature1, feature2]

    @property
    def out_shape(self):
        return [
            ShapeSpec(channels=c)
            for c in [self._out_channels[0], self._out_channels[1]]
        ]