reshape_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16 17 18 19

namespace paddle {
namespace operators {

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    std::vector<int64_t> output_shape;
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    // NOTE: Reshape op cannot reshape an input sequence batch into an
    // output sequence batch that has a different number of time steps. Here
    // output always shares the LoD information with input. But if
    // Attr(shape) contains 0 or -1, the actual output shape can only be
    // determined during runtime. The check for wheather it is a valid
    // output sequence batch is performed in runtime.
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 private:
  framework::DDim ValidateShape(const std::vector<int> shape,
                                const framework::DDim &in_dims) const {
    const int64_t in_size = framework::product(in_dims);
    // only one dimension canbe set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                        "Invalid shape is given.");
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }
};

Y
Yibing Liu 已提交
96 97
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
98
  ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
99 100 101
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor of reshape operator.");
    AddOutput("Out", "The output tensor of reshape operator.");
C
caoying03 已提交
102
    AddAttr<std::vector<int>>(
C
caoying03 已提交
103
        "shape", "(std::vector<int>) Target shape of reshape operator.");
Y
Yan Chunwei 已提交
104
    AddAttr<bool>("inplace",
C
caoying03 已提交
105 106 107 108 109
                  "(default: false) Change the source tensor's shape without "
                  "memory copy. When Attr(inplace) is set true, the output "
                  "tensor shares memory with Input(X), otherwise, a new output "
                  "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
K
kexinzhao 已提交
110 111
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
112

C
caoying03 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
Reshape Input(X) into the shape specified by Attr(shape). The data in Input(X)
are unchanged.

Examples:

1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
134

C
caoying03 已提交
135
Note:
Y
Yibing Liu 已提交
136

C
caoying03 已提交
137 138 139 140 141
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
1. More than one dimensions in Attr(shape) can be set to 0, which means the real
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
142
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
143
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
Y
Yibing Liu 已提交
144

Y
Yibing Liu 已提交
145 146 147 148 149 150 151 152 153 154 155 156
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

157
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
158 159 160 161
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
162 163 164 165 166 167
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
168
using CPU = paddle::platform::CPUDeviceContext;
Y
Yibing Liu 已提交
169 170 171

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
172 173 174 175 176 177 178 179
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
                       ops::ReshapeKernel<CPU, double>,
                       ops::ReshapeKernel<CPU, int>,
                       ops::ReshapeKernel<CPU, int64_t>);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
                       ops::ReshapeGradKernel<CPU, double>,
                       ops::ReshapeGradKernel<CPU, int>,
                       ops::ReshapeGradKernel<CPU, int64_t>);