test_helper.h 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19
#pragma once

#include <map>
#include <random>
#include <string>
#include <vector>
20

Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
23
#include "paddle/fluid/platform/profiler.h"
24

25 26
DECLARE_bool(use_mkldnn);

27
template <typename T>
28
void SetupTensor(paddle::framework::LoDTensor* input,
29
                 paddle::framework::DDim dims, T lower, T upper) {
30 31
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
32 33 34 35 36
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
37 38 39
  }
}

40
template <typename T>
41 42
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
43
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
44 45
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
46 47
}

48
template <typename T>
49 50 51
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
52
  int dim = lod[0][lod[0].size() - 1];
53 54 55 56
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
57
void SetupLoDTensor(paddle::framework::LoDTensor* input,
58
                    paddle::framework::DDim dims,
59 60
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
61
  const size_t level = lod.size() - 1;
62
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
63
  input->set_lod(lod);
64
  SetupTensor<T>(input, dims, data);
65 66 67
}

template <typename T>
68 69
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
91
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
92 93
}

94 95
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
96 97 98
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
117 118 119
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
120 121 122 123
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
124 125
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

141
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
142 143
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
144
                   const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
145
                   const int repeat = 1, const bool is_combined = false) {
146
  // 1. Define place, executor, scope
147 148 149 150
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

151 152 153 154 155 156
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
157
    state = paddle::platform::ProfilerState::kAll;
158 159 160 161
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
162 163
#else
    PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
164 165 166
#endif
  }

167 168
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
169 170 171

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
172 173 174 175
  {
    paddle::platform::RecordEvent record_event(
        "init_program",
        paddle::platform::DeviceContextPool::Instance().Get(place));
176
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
177
  }
X
Xin Pan 已提交
178

179 180
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
181
                                    "load_program_profiler");
182
  paddle::platform::ResetProfiler();
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

203 204 205 206
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
207
  {
208 209 210 211
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
212
      executor.CreateVariables(*inference_program, scope, 0);
213 214
    }

215
    // Ignore the profiling results of the first run
216
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
217
    bool CreateLocalScope = CreateVars;
218 219
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
220
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
221
                                  &fetch_targets, CreateLocalScope, CreateVars);
222
    } else {
223
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
224
                   CreateLocalScope, CreateVars);
225
    }
226 227 228 229

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

230 231 232 233 234 235
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
      paddle::platform::RecordEvent record_event(
          "run_inference",
          paddle::platform::DeviceContextPool::Instance().Get(place));

236
      if (PrepareContext) {
L
Liu Yiqun 已提交
237
        // Note: if you change the inference_program, you need to call
238
        // executor.Prepare() again to get a new ExecutorPrepareContext.
239
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
240 241
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
242
      } else {
243
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
244
                     CreateLocalScope, CreateVars);
245
      }
246 247
    }

248 249
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
250
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
251 252
    paddle::platform::ResetProfiler();
  }
253 254 255

  delete scope;
}