Jetson_build.md 7.4 KB
Newer Older
1
# Jetson平台编译指南
2 3

## 说明
4
`NVIDIA Jetson`设备是具有`NVIDIA GPU`的嵌入式设备,可以将目标检测算法部署到该设备上。本文档是在`Jetson`硬件上部署`PaddleDetection`模型的教程。
5

6 7 8 9 10 11
本文档以`Jetson TX2`硬件、`JetPack 4.3`版本为例进行说明。

`Jetson`平台的开发指南请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html).

## Jetson环境搭建
`Jetson`系统软件安装,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html).
12 13 14 15 16 17 18

* (1) 查看硬件系统的l4t的版本号
```
cat /etc/nv_tegra_release
```
* (2) 根据硬件,选择硬件可安装的`JetPack`版本,硬件和`JetPack`版本对应关系请参考[jetpack-archive](https://developer.nvidia.com/embedded/jetpack-archive).

19
* (3) 下载`JetPack`,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html) 中的`Preparing a Jetson Developer Kit for Use`章节内容进行刷写系统镜像。
20

21
## 下载或编译`Paddle`预测库
C
cnn 已提交
22
本文档使用`Paddle``JetPack4.3`上预先编译好的预测库,请根据硬件在[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 中选择对应版本的`Paddle`预测库。
23

C
cnn 已提交
24
这里选择[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-nv-jetson-jetpack4.3-all/paddle_inference.tgz), `Paddle`版本`2.0.0-rc0`,`CUDA`版本`10.0`,`CUDNN`版本`7.6``TensorRT`版本`6`
25 26

若需要自己在`Jetson`平台上自定义编译`Paddle`库,请参考文档[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)`NVIDIA Jetson嵌入式硬件预测库源码编译`部分内容。
27 28 29 30 31 32 33 34 35 36

### Step1: 下载代码

 `git clone https://github.com/PaddlePaddle/PaddleDetection.git`

**说明**:其中`C++`预测代码在`/root/projects/PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。


### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference

37
解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.1-nv-jetson-jetpack4.3-all/paddle_inference.tgz)
38 39 40 41 42 43 44 45 46 47 48

下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```

49
**注意:** 预编译库`nv-jetson-cuda10-cudnn7.6-trt6`使用的`GCC`版本是`7.5.0`,其他都是使用`GCC 4.8.5`编译的。使用高版本的GCC可能存在`ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


### Step4: 编译

编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:

注意,`TX2`平台的`CUDA``CUDNN`需要通过`JetPack`安装。

```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON

# 是否使用MKL or openblas,TX2需要设置为OFF
WITH_MKL=OFF

# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=ON

68 69 70
# TensorRT 的include路径
TENSORRT_INC_DIR=/usr/include/aarch64-linux-gnu

71
# TensorRT 的lib路径
72
TENSORRT_LIB_DIR=/usr/lib/aarch64-linux-gnu
73 74 75 76

# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/

77 78 79
# Paddle 预测库名称
PADDLE_LIB_NAME=paddle_inference

80 81 82 83 84
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF

# CUDA 的 lib 路径
85
CUDA_LIB=/usr/local/cuda-10.0/lib64
86 87

# CUDNN 的 lib 路径
88
CUDNN_LIB=/usr/lib/aarch64-linux-gnu
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

# OPENCV_DIR 的路径
# linux平台请下载:https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2,并解压到deps文件夹下
# TX2平台请下载:https://paddlemodels.bj.bcebos.com/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip,并解压到deps文件夹下
OPENCV_DIR=/path/to/opencv

# 请检查以上各个路径是否正确

# 以下无需改动
cmake .. \
    -DWITH_GPU=${WITH_GPU} \
    -DWITH_MKL=OFF \
    -DWITH_TENSORRT=${WITH_TENSORRT} \
    -DTENSORRT_DIR=${TENSORRT_DIR} \
    -DPADDLE_DIR=${PADDLE_DIR} \
    -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
    -DCUDA_LIB=${CUDA_LIB} \
    -DCUDNN_LIB=${CUDNN_LIB} \
107 108
    -DOPENCV_DIR=${OPENCV_DIR} \
    -DPADDLE_LIB_NAME={PADDLE_LIB_NAME}
109 110 111 112 113 114 115 116 117 118 119 120 121 122
make
```

例如设置如下:
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON

# 是否使用MKL or openblas
WITH_MKL=OFF

# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF

123 124 125 126 127
# TensorRT 的include路径
TENSORRT_INC_DIR=/usr/include/aarch64-linux-gnu

# TensorRT 的lib路径
TENSORRT_LIB_DIR=/usr/lib/aarch64-linux-gnu
128 129

# Paddle 预测库路径
130
PADDLE_DIR=/home/nvidia/PaddleDetection_infer/fluid_inference/
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF

# CUDA 的 lib 路径
CUDA_LIB=/usr/local/cuda-10.0/lib64

# CUDNN 的 lib 路径
CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
```

修改脚本设置好主要参数后,执行`build`脚本:
 ```shell
 sh ./scripts/build.sh
 ```

### Step5: 预测及可视化
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
|  参数   | 说明  |
|  ----  | ----  |
| --model_dir  | 导出的预测模型所在路径 |
153
| --image_file  | 要预测的图片文件路径 |
154 155
| --video_path  | 要预测的视频文件路径 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
G
Guanghua Yu 已提交
156
| --device  | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|
157
| --gpu_id  |  指定进行推理的GPU device id(默认值为0)|
158
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
159 160 161
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |

162
**注意**: 如果同时设置了`video_path``image_file`,程序仅预测`video_path`
163 164 165 166 167 168 169 170 171 172 173 174 175 176


`样例一`
```shell
#不使用`GPU`测试图片 `/root/projects/images/test.jpeg`  
./main --model_dir=/root/projects/models/yolov3_darknet --image_path=/root/projects/images/test.jpeg
```

图片文件`可视化预测结果`会保存在当前目录下`output.jpg`文件中。


`样例二`:
```shell
#使用 `GPU`预测视频`/root/projects/videos/test.mp4`
G
Guanghua Yu 已提交
177
./main --model_dir=/root/projects/models/yolov3_darknet --video_path=/root/projects/images/test.mp4 --device=GPU
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
```
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。


## 性能测试
测试环境为:硬件: TX2,JetPack版本: 4.3, Paddle预测库: 1.8.4,CUDA: 10.0, CUDNN: 7.5, TensorRT: 5.0.  

去掉前100轮warmup时间,测试100轮的平均时间,单位ms/image,只计算模型运行时间,不包括数据的处理和拷贝。


|模型 | 输入| AnalysisPredictor(ms) |
|---|----|---|
| yolov3_mobilenet_v1 |  608*608  | 56.243858
| faster_rcnn_r50_1x  | 1333*1333  | 73.552460
| faster_rcnn_r50_vd_fpn_2x | 1344*1344 | 87.582146
| mask_rcnn_r50_fpn_1x | 1344*1344  | 107.317848
| mask_rcnn_r50_vd_fpn_2x | 1344*1344  | 87.98.708122
| ppyolo_r18vd | 320*320  |  22.876789
| ppyolo_2x | 608*608  | 68.562050