alexnet.py 2.1 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4
#!/usr/bin/env python

from paddle.trainer_config_helpers import *

5 6
height = 227
width = 227
D
dangqingqing 已提交
7
num_class = 1000
8
batch_size = get_config_arg('batch_size', int, 128)
T
tensor-tang 已提交
9
gp = get_config_arg('layer_num', int, 1)
T
tensor-tang 已提交
10 11
is_infer = get_config_arg("is_infer", bool, False)
num_samples = get_config_arg('num_samples', int, 2560)
D
dangqingqing 已提交
12

T
tensor-tang 已提交
13 14 15 16 17 18 19 20
args = {
    'height': height,
    'width': width,
    'color': True,
    'num_class': num_class,
    'is_infer': is_infer,
    'num_samples': num_samples
}
21
define_py_data_sources2(
22 23 24 25 26
    "train.list" if not is_infer else None,
    "test.list" if is_infer else None,
    module="provider",
    obj="process",
    args=args)
D
dangqingqing 已提交
27 28

settings(
29 30 31 32
    batch_size=batch_size,
    learning_rate=0.01 / batch_size,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * batch_size))
D
dangqingqing 已提交
33 34 35

# conv1
net = data_layer('data', size=height * width * 3)
36 37 38 39 40 41 42
net = img_conv_layer(
    input=net,
    filter_size=11,
    num_channels=3,
    num_filters=96,
    stride=4,
    padding=1)
D
dangqingqing 已提交
43
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
44
net = img_pool_layer(input=net, pool_size=3, stride=2)
D
dangqingqing 已提交
45 46

# conv2
47
net = img_conv_layer(
T
tensor-tang 已提交
48
    input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp)
D
dangqingqing 已提交
49 50 51 52
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
net = img_pool_layer(input=net, pool_size=3, stride=2)

# conv3
53 54
net = img_conv_layer(
    input=net, filter_size=3, num_filters=384, stride=1, padding=1)
D
dangqingqing 已提交
55
# conv4
56
net = img_conv_layer(
T
tensor-tang 已提交
57
    input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp)
D
dangqingqing 已提交
58 59

# conv5
60
net = img_conv_layer(
T
tensor-tang 已提交
61
    input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp)
D
dangqingqing 已提交
62 63
net = img_pool_layer(input=net, pool_size=3, stride=2)

64 65 66 67 68 69 70 71 72 73
net = fc_layer(
    input=net,
    size=4096,
    act=ReluActivation(),
    layer_attr=ExtraAttr(drop_rate=0.5))
net = fc_layer(
    input=net,
    size=4096,
    act=ReluActivation(),
    layer_attr=ExtraAttr(drop_rate=0.5))
D
dangqingqing 已提交
74 75
net = fc_layer(input=net, size=1000, act=SoftmaxActivation())

T
tensor-tang 已提交
76 77 78 79 80 81
if is_infer:
    outputs(net)
else:
    lab = data_layer('label', num_class)
    loss = cross_entropy(input=net, label=lab)
    outputs(loss)