sample_logits_op.cc 9.2 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/sample_logits_op.h"
#include "paddle/fluid/operators/math/sample_prob.h"

namespace paddle {
namespace operators {

class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Logits",
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.");
    AddInput("Label",
             "(Tensor) The ground truth which is a 2-D tensor. Label is a "
             "Tensor<int64> with shape [N x NT], where NT is the number of"
             "true labels for each example.");
    AddInput(
        "CustomSamples",
        "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shaoe [N x "
        "S+NT]."
        "The customized sample labels with true labels at first. This tensor"
        "is only use_custom_samples is true.")
        .AsDispensable();
    AddInput(
        "CustomProbabilities",
        "(Tensor, default: Tensor<float>), A 2-D tensor with shaoe [N x S+NT]."
        "The customized sample probabilities with true labels at first. This "
        "tensor is only use_custom_samples is true.")
        .AsDispensable();
    AddOutput(
        "Samples",
        "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N x "
        "S+NT]."
        "The outputs value of sampler by given the true label, where S is the "
        "number of negative sample for each example. So Samples includes NT "
        "true"
        "labels and S negative labels for each example. This will be used in"
        "backward calculation.")
        .AsIntermediate();
    AddOutput(
        "Probabilities",
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x "
        "S+NT]."
        "The outputs value of progabilites of samples by given the true label, "
        "where S is the "
        "number of negative sample for each example. So Samples includes NT "
        "true"
        "labels and S negative labels for each example.")
        .AsIntermediate();
    AddOutput("SampledLogits",
              "(Tensor, default: Tensor<float>), A 2-D tensor with shape"
X
xuezhong 已提交
67
              "[N x S+NT]. The outputs value of sample logits, which will be"
X
xuezhong 已提交
68 69
              "used in backward calculation.")
        .AsIntermediate();
X
xuezhong 已提交
70 71 72 73
    AddOutput(
        "SampledLabel",
        "(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled label"
        "with shape [N x S + NT].");
X
xuezhong 已提交
74 75 76 77 78 79 80 81 82 83 84
    AddAttr<bool>(
        "use_custom_samples",
        "An indicator whether to use custom samples with probabilities, if True"
        "the operator will use custom samples and custom probabilities"
        "otherwise, the operator will generate them by itself.")
        .SetDefault(false);
    AddAttr<bool>(
        "uniq",
        "An indicator whether to sample non-repetitive negtive labels, if True"
        "the operator will sample negtive labels without replacement."
        "otherwise, the operator will sample negtive labels with replacement.")
X
xuezhong 已提交
85
        .SetDefault(true);
X
xuezhong 已提交
86 87 88 89 90 91 92 93 94 95
    AddAttr<bool>(
        "remove_accidental_hits",
        "An indicator whether to remove accidental hits when samples hits true"
        "labels, the removal is implemented by subtracting the corresponding"
        "logits by float_max to subpress their softmax to be zero.")
        .SetDefault(true);
    AddAttr<int>("num_samples", "The number of negative samples.");
    AddAttr<int>("seed", "Random seed for generating samples").SetDefault(0);

    AddComment(R"DOC(
X
xuezhong 已提交
96 97 98
  """
  Computes sampled output training logits and labels suitable for implementing
  sampled softmax.
X
xuezhong 已提交
99

X
xuezhong 已提交
100
  """
X
xuezhong 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

)DOC");
  }
};

class SampleLogitsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Samples"),
                   "Output(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Probabilities"),
                   "Output(Probabilities) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"),
                   "Output(SampledLogits) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("SampledLabel"),
                   "Output(SampledLabel) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");

    PADDLE_ENFORCE_EQ(
        logits_dims.size(), 2UL,
        "The logits of softmax_with_cross_entropy should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
                      "The labels should be a 2-D tensor.");

    const int num_samples = ctx->Attrs().Get<int>("num_samples");
    const int num_sampled_classes = labels_dims[1] + num_samples;
    ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("SampledLabel", {logits_dims[0], labels_dims[1]});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits"));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    // kt.place_ = platform::CPUPlace();
    return kt;
  }
};

// UNDERSTAND: InferShape for Grad
class SampleLogitsOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Samples"),
                   "Input(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("SampledLogits"),
                   "Input(SampledLogits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")),
                   "Input(SampledLogits@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto logit_dims = ctx->GetInputDim("Logits");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "The label should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(logit_dims.size(), 2UL,
                      "The logits should be a 2-D tensor.");

    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("SampledLogits")));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    // kt.place_ = platform::CPUPlace();
    return kt;
  }
};

// UNDERSTAND: what's the rule for making a GradMaker TODO
class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
    grad_op->SetType("sample_logits_grad");
    grad_op->SetInput("Logits", Input("Logits"));
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Samples", Output("Samples"));
    grad_op->SetInput("SampledLogits", Output("SampledLogits"));
    grad_op->SetInput(framework::GradVarName("SampledLogits"),
                      OutputGrad("SampledLogits"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker,
                  ops::SampleLogitsGradMaker);
REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad);
REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel<float>,
                       ops::SampleLogitsKernel<double>);
REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel<float>,
                       ops::SampleLogitsGradKernel<double>);