DataProvider.h 13.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#pragma once

#include <vector>
#include <memory>
#include <mutex>
#include <iostream>
#include <fstream>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#include "paddle/utils/Logging.h"
#include "paddle/utils/Queue.h"
#include "paddle/utils/Locks.h"
#include "paddle/utils/ThreadLocal.h"
#include "paddle/utils/TypeDefs.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Util.h"
#include "paddle/math/Vector.h"
#include "DataConfig.pb.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/parameter/Argument.h"

namespace paddle {
/**
Q
qijun 已提交
43
 * @def REGISTER_DATA_PROVIDER
44 45
 * @brief Macro for registering a data provider. The class type should contain
 *        a consturctor with parameter (DataConfig, bool).
Z
zhangjinchao01 已提交
46
 */
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#define REGISTER_DATA_PROVIDER(__type_name, __class_name)\
  static InitFunction __reg_type_##__type_name([]() {\
  DataProvider::registrar_.registerClass(\
  #__type_name, \
  [](DataConfig conf, ModelConfig, bool useGpu) -> DataProvider* { \
    DataProvider* dp = new __class_name (conf, useGpu);\
    return dp;\
  });\
})

/**
 * @def REGISTER_DATA_PROVIDER_EX
 * @brief Macro for registering a data provider, which contains a constructor
 *        with parameter (DataConfig, ModelConfig, bool).
 */
#define REGISTER_DATA_PROVIDER_EX(__type_name, __class_name)            \
  static InitFunction __reg_type_##__type_name([] {                     \
  DataProvider::registrar_.registerClass<__class_name>(#__type_name);   \
})
Z
zhangjinchao01 已提交
66 67 68 69 70

class DataBatch;
class BufferBatch;
typedef std::shared_ptr<DataBatch> DataBatchPtr;
typedef std::shared_ptr<BufferBatch> BufferBatchPtr;
Q
qijun 已提交
71 72 73
/**
 * @brief Data for batch training a neural network
 */
Z
zhangjinchao01 已提交
74 75 76
class DataBatch {
public:
  DataBatch() : size_(0) { data_.clear(); }
Q
qijun 已提交
77 78 79 80
  /**
   * @brief Get batch size
   * @return batch size
   */
Z
zhangjinchao01 已提交
81
  int64_t getSize() const { return size_; }
Q
qijun 已提交
82 83 84 85
  /**
   * @brief Get num of sequences of sequence data
   * @return num of sequences
   */
Z
zhangjinchao01 已提交
86 87 88 89 90 91
  int64_t getNumSequences() const {
    if (data_.empty()) return size_;
    return data_[0].sequenceStartPositions
               ? data_[0].sequenceStartPositions->getSize() - 1
               : size_;
  }
Q
qijun 已提交
92 93 94 95
  /**
   * @brief Set batch size
   * @param[in] size size
   */
Z
zhangjinchao01 已提交
96
  void setSize(int64_t size) { size_ = size; }
Q
qijun 已提交
97 98 99 100 101 102
  /**
   * @brief Get size of argument vector
   * @return size of argument vector
   * @note For usual supervised learning, input data and label is needed,
   * then there will be two argument.
   */
Z
zhangjinchao01 已提交
103 104
  int64_t getNumStreams() const { return data_.size(); }

Q
qijun 已提交
105 106 107 108 109
  /**
   * @brief Get a argument with index i
   * @param[in] i index in argument vector
   * @return a argument with index i
   */
Z
zhangjinchao01 已提交
110
  const Argument& getStream(int i) const { return data_[i]; }
Q
qijun 已提交
111 112 113 114
  /**
   * @brief Get all argument
   * @return an argument vector
   */
Z
zhangjinchao01 已提交
115
  std::vector<Argument>& getStreams() { return data_; }
Q
qijun 已提交
116 117 118 119
  /**
   * @brief Get all argument const
   * @return an argument vector
   */
Z
zhangjinchao01 已提交
120
  std::vector<Argument> getStreams() const { return data_; }
Q
qijun 已提交
121 122 123
  /**
   * @brief Clear DataBatch
   */
Z
zhangjinchao01 已提交
124 125 126 127 128 129
  void clear() {
    data_.clear();
    size_ = 0;
  }

  /**
Q
qijun 已提交
130 131 132
   * @brief Append data to DataBatch
   * @param[in] data  matrix data
   * @note The order in which each data stream is appended must match the order
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140 141 142
   * specified in stream_names of DataConfig. The stream_names can be obtained
   * using DataProvider::getStreamNames().
   */
  void appendData(MatrixPtr data) {
    Argument argu;
    argu.value = data;
    data_.push_back(argu);
  }

  /**
Q
qijun 已提交
143 144 145 146
   * @brief Append sequence data to DataBatch
   * @param[in] data                      matrix data
   * @param[in] sequenceStartPositions    sequence data
   * @note The order in which each data stream is appended must match the order
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153 154 155 156
   * specified in stream_names of DataConfig. The stream_names can be obtained
   * using DataProvider::getStreamNames().
   */
  void appendData(const MatrixPtr& data,
                  const ICpuGpuVectorPtr& sequenceStartPositions) {
    Argument argu;
    argu.value = data;
    argu.sequenceStartPositions = sequenceStartPositions;
    data_.push_back(argu);
  }
Q
qijun 已提交
157 158 159 160 161
  /**
   * @brief Append label data
   * @param[in]  label    label data
   * @param[in]  value    matrix data, default null
   */
Z
zhangjinchao01 已提交
162 163 164 165 166 167
  void appendLabel(IVectorPtr label, MatrixPtr value = nullptr) {
    Argument argu;
    argu.ids = label;
    argu.value = value;
    data_.push_back(argu);
  }
Q
qijun 已提交
168 169 170 171
  /**
   * @brief Append user defined data
   * @param[in]  ptr     user defined data
   */
Z
zhangjinchao01 已提交
172 173 174 175 176 177
  void appendUserDefinedPtr(UserDefinedVectorPtr ptr) {
    Argument argu;
    argu.udp = ptr;
    data_.push_back(argu);
  }

Q
qijun 已提交
178 179 180 181 182
  /*
   * @brief Append argument
   * @param[in]  argus   DataBatch.getStreams()
   * @param[in]  size    DataBatch.getSize()
   * @param[in]  dataId  sub dataprovider id (in MultiDataProvider)
Z
zhangjinchao01 已提交
183 184 185 186 187 188 189 190 191 192 193
   */
  void appendArguments(const std::vector<Argument>& argus, int size,
                       int dataId) {
    size_ += size;
    for (const auto& argu : argus) {
      data_.push_back(argu);
      data_.back().dataId = dataId;
    }
  }

protected:
Q
qijun 已提交
194 195 196
  /**
   * @brief batch size
   */
Z
zhangjinchao01 已提交
197
  int64_t size_;
Q
qijun 已提交
198 199 200 201
  /**
   * @brief A batch data consist of a Argument vector,
   * An argument corresponds to a type of input data.
   */
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  std::vector<Argument> data_;
};

class BufferBatch {
public:
  BufferBatch() {
    hlStream_ = HPPL_STREAM_DEFAULT;
    hlEvent_ = NULL;
    batchData_ = NULL;
  }
  ~BufferBatch() {
    if (hlEvent_) {
      hl_destroy_event(hlEvent_);
      hlEvent_ = NULL;
    }
    if (batchData_) {
      delete batchData_;
      batchData_ = NULL;
    }
  }

  void setDataBatch(DataBatch* batchData) { batchData_ = batchData; }
  DataBatch* getDataBatch() { return batchData_; }

  void setCuStream(hl_stream_t stream) { hlStream_ = stream; }
  hl_stream_t getCuStream() const { return hlStream_; }

  void setCuEvent(hl_event_t event) { hlEvent_ = event; }

  hl_event_t getCuEvent() const { return hlEvent_; }

  void createCuEvent() {
    if (!hlEvent_) {
      hlStream_ = HPPL_STREAM_1;
      hl_create_event(&hlEvent_);
    }
  }

  void syncEvent() {
    if (hlEvent_) {
      hl_stream_wait_event(hlStream_, hlEvent_);
    }
  }

  void swap(BufferBatch* bufBatch);
  void clone(DataBatch* srcBatch, bool useGpu);

protected:
  DataBatch* batchData_;
  hl_stream_t hlStream_;
  hl_event_t hlEvent_;
};

class DataProvider;
typedef std::shared_ptr<DataProvider> DataProviderPtr;

typedef Queue<BufferBatch*> BufferBatchQueue;

class DoubleBuffer {
public:
  DoubleBuffer(DataProvider* dataPool, bool useGpu, int64_t batchSize = 0);
  virtual ~DoubleBuffer();
  void removeOneBatch(DataBatch* dataBatch);

  void setBatchSize(int64_t newBatchSize) { batchSize_ = newBatchSize; }

  int64_t getBatchSize() { return batchSize_; }

  void startAsyncLoad();
  void finishAsyncLoad() {
    stopping_ = true;
    taskReadySem_.post();
    asyncLoader_->join();
  }

  void setPending(bool pending) { pending_ = pending; }

protected:
  virtual void asyncLoadBatch();
  void insertOneBatch(DataBatch* batch);

  DataProvider* dataPool_;
  bool useGpu_;
  int32_t batchSize_;
  ThreadLocal<BufferBatchPtr> usingBatch_;
  BufferBatchQueue* dataQueue_;
  BufferBatchQueue* bufferQueue_;
  std::unique_ptr<std::thread> asyncLoader_;
  Semaphore taskReadySem_;
  bool stopping_;
  bool pending_;
};

/**
Q
qijun 已提交
296 297
 * @brief Base class for DataProvider, which supplies data for training
 * @note It can supplies multiple streams of data.
Z
zhangjinchao01 已提交
298 299 300 301 302
 * For typical supervised training, there are two streams:
 * one is for input, one is for label.
 */
class DataProvider {
public:
303
  static ClassRegistrar<DataProvider, DataConfig, ModelConfig, bool> registrar_;
Z
zhangjinchao01 已提交
304
  static DataProvider* create(const DataConfig& config,
305
                              const ModelConfig& modelConfig,
Z
zhangjinchao01 已提交
306 307
                              bool useGpu = FLAGS_use_gpu);

308 309 310 311 312 313 314
  /**
   * @brief create only used for unittest.
   */
  inline static DataProvider* create(const DataConfig &config, bool useGpu) {
    return create(config, ModelConfig(), useGpu);
  }

Z
zhangjinchao01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
  DataProvider(const DataConfig& config, bool useGpu)
      : config_(config),
        skipShuffle_(false),
        usageRatio_(config.usage_ratio()),
        useGpu_(useGpu) {
    if (config_.async_load_data()) {
      initAsyncLoader();
    }
  }
  virtual ~DataProvider() {}

  const DataConfig& getConfig() const { return config_; }

  void setSkipShuffle() { skipShuffle_ = true; }
Q
qijun 已提交
329 330 331 332 333 334 335

  /**
   * @brief Get next batch of training samples
   * @param[in]    size    size of training samples to get
   * @param[out]   batch   a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
336 337 338
  int64_t getNextBatch(int64_t size, DataBatch* batch);

  /**
Q
qijun 已提交
339
   * @brief Shuffle the data set
Z
zhangjinchao01 已提交
340 341 342 343
   */
  virtual void shuffle() = 0;

  /**
Q
qijun 已提交
344 345
   * @brief reset all the value of index
   * @note reset() must be called before any calls to getNextBatch()
Z
zhangjinchao01 已提交
346 347 348 349 350 351 352 353 354 355 356
   * IMPORTANT: subclass reset() should always call the base class reset()
   * at the end of the function
   */
  virtual void reset() {
    if (doubleBuffer_ != nullptr) {
      LOG(INFO) << "the double-buffer is starting ...";
      doubleBuffer_->startAsyncLoad();
    }
  }

  /**
Q
qijun 已提交
357 358 359
   * @brief Get the size of training samples
   * @return the number of training samples in the data set.
   * @note return -1 to indicate unlimited number of samples.
Z
zhangjinchao01 已提交
360 361
   */
  virtual int64_t getSize() = 0;
362

Q
qijun 已提交
363 364 365 366 367 368
  /**
   * @brief Get next batch training samples internally
   * @param[in]    size      size of training samples to get
   * @param[out]   batch     a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
369 370 371 372 373 374 375 376 377
  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch) = 0;

protected:
  DataConfig config_;
  bool skipShuffle_;
  float usageRatio_;
  bool useGpu_;
  std::unique_ptr<DoubleBuffer> doubleBuffer_;
  ThreadLocal<std::vector<MatrixPtr>> constantSlots_;
Q
qijun 已提交
378 379 380 381 382 383
  /**
   * @@brief Get next batch training samples from buffer
   * @param[in]    size      size of training samples to get
   * @param[out]   batch     a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  int64_t getNextBatchFromBuffer(int64_t size, DataBatch* batch);

  void initAsyncLoader();
};

/**
 * A data provider which does nothing. It only serves as providing
 * necessary configurations such as stream_names
 */
class DummyDataProvider : public DataProvider {
public:
  DummyDataProvider(const DataConfig& config, bool useGpu)
      : DataProvider(config, useGpu) {}
  virtual void shuffle() {}
  virtual void reset() { DataProvider::reset(); }
  virtual int64_t getSize() { return 0; }
  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch) {
    (void)size;
    (void)batch;
    return 0;
  }
};

407 408 409
/**
 * Data provider for one input and one integer label.
 */
Z
zhangjinchao01 已提交
410 411
class SimpleDataProviderBase : public DataProvider {
protected:
412 413 414 415
  /// sample feature dimension
  int64_t sampleDim_;
  /// the number of samples
  int64_t bufferCapacity_;
Z
zhangjinchao01 已提交
416
  int64_t sampleNumInBuf_;
417 418 419 420
  /// next item to read in buffer
  int64_t nextItemIndex_;
  /// some user defined info for validation
  bool withInfo_;
Z
zhangjinchao01 已提交
421

422
  /// data buffer: bufferCapacity_ * nDataDim_
Z
zhangjinchao01 已提交
423 424
  CpuMatrixPtr hInputDataBuf_;

425
  /// label buffer:bufferCapacity_ * 1
Z
zhangjinchao01 已提交
426 427
  CpuIVectorPtr hInputLabelBuf_;

428
  /// info buffer:bufferCapacity_ * 1
Z
zhangjinchao01 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  CpuIVectorPtr hInputInfoBuf_;

  ThreadLocal<MatrixPtr> dataBatch_;
  ThreadLocal<IVectorPtr> labelBatch_;
  ThreadLocal<IVectorPtr> infoBatch_;

  RWLock lock_;

public:
  SimpleDataProviderBase(const DataConfig& config, bool useGpu, bool withInfo);
  ~SimpleDataProviderBase() {}

  void shuffle();

  virtual void reset();

  virtual int64_t getSize();

  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch);

449
  /// return the number of samples in the buffer
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  int64_t fillBuffer();

protected:
  /**
   * @brief Fill at most size samples into data and label.
   *
   * Each input is stored in contiguous memory locations in data.
   *
   * data[n * sampleDim_] .. data[n * sampleDim_ + sampleDim_ - 1] is for
   * the input of the n-th sample.
   *
   * label[n] is the label for the n-th sample.
   */
  virtual int64_t fillBufferImp(real* data, int* label, int* info,
                                int64_t size) = 0;
};

class SimpleDataProvider : public SimpleDataProviderBase {
public:
  SimpleDataProvider(const DataConfig& config, bool useGpu);
  ~SimpleDataProvider();
  virtual void reset();

protected:
  void loadData(const std::string& fileName);
  void loadDataFile(const std::string& fileName);
  virtual int64_t fillBufferImp(real* data, int* label, int* info,
                                int64_t size);

protected:
  size_t currentSampleIndex_;
  std::vector<int> labels_;
  std::vector<real> data_;
};

}  // namespace paddle