sequence_expand_op.h 4.0 KB
Newer Older
W
wanghaoshuang 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16 17

#pragma once

#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
18
#include "paddle/memory/memcpy.h"
W
wanghaoshuang 已提交
19
#include "unsupported/Eigen/CXX11/Tensor"
W
wanghaoshuang 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
27
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
33
    auto x_dims = x->dims();
W
wanghaoshuang 已提交
34
    auto* y = context.Input<LoDTensor>("Y");
Q
Qiao Longfei 已提交
35
    PADDLE_ENFORCE(!y->lod().empty(), "y should have lod");
36 37
    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims[0]),
                      y->lod().back().size() - 1,
W
wanghaoshuang 已提交
38 39 40
                      "The size of last lod level in Input(Y)"
                      "must be equal to dims[0] of Input(X).");
    out->set_lod(y->lod());
Q
QI JUN 已提交
41 42
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
W
wanghaoshuang 已提交
43 44
    size_t element_len = framework::product(x_dims) / x_dims[0];
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
45 46 47 48 49 50 51 52 53
    auto out_starts = out->lod().back();

    for (size_t i = 0; i < out_starts.size() - 1; i++) {
      int scale = out_starts[i + 1] - out_starts[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          x_t(x_data, 1, element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          out_t(out_data, scale, element_len);
Y
Yu Yang 已提交
54
      Eigen::array<int, 2> cast({{scale, 1}});
Q
QI JUN 已提交
55
      out_t.device(*place) = x_t.broadcast(cast);
W
wanghaoshuang 已提交
56 57
      x_data += element_len;
      out_data += element_len * scale;
W
wanghaoshuang 已提交
58
    }
W
wanghaoshuang 已提交
59 60 61
  }
};

62 63 64 65 66 67 68 69 70 71 72 73
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
Q
QI JUN 已提交
74
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
75
class SequenceExpandGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
76 77
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
78 79 80
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Input<LoDTensor>("Out");
W
wanghaoshuang 已提交
81
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
82
    auto out_last_level = out->lod().back();
W
wanghaoshuang 已提交
83 84 85
    d_x->set_lod(x->lod());
    const T* d_out_data = d_out->data<T>();
    T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
86
    size_t element_len = d_out->numel() / d_out->dims()[0];
W
wanghaoshuang 已提交
87 88 89 90 91 92 93
    for (size_t i = 0; i < out_last_level.size() - 1; ++i) {
      size_t repeat = out_last_level[i + 1] - out_last_level[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
      d_out_t(d_out_data, static_cast<int>(repeat), element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>
      d_x_t(d_x_data, static_cast<int>(element_len));
Q
QI JUN 已提交
94 95 96
      auto place =
          context.template device_context<DeviceContext>().eigen_device();
      d_x_t.device(*place) = d_out_t.sum(Eigen::array<int, 1>({{0}}));
W
wanghaoshuang 已提交
97 98
      d_out_data += (repeat * element_len);
      d_x_data += element_len;
W
wanghaoshuang 已提交
99
    }
W
wanghaoshuang 已提交
100 101 102 103 104
  }
};

}  // namespace operators
}  // namespace paddle