sequence_rnn_mixed_inputs.py 2.6 KB
Newer Older
1
#  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

from paddle.trainer_config_helpers import *

######################## data source ################################
define_py_data_sources2(
    train_list='gserver/tests/Sequence/dummy.list',
    test_list=None,
    module='rnn_data_provider',
    obj='process_mixed')

settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 2
hidden_dim = 2
label_dim = 2

data1 = data_layer(name="word1", size=dict_dim)
data2 = data_layer(name="word2", size=dict_dim)
label = data_layer(name="label", size=label_dim)

encoding = embedding_layer(input=data2, size=word_dim)


# This hierarchical RNN is designed to be equivalent to the simple RNN in
39
# sequence_rnn_matched_inputs.conf
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def outer_step(subseq, seq, nonseq, encoding):
    outer_mem = memory(name="outer_rnn_state", size=hidden_dim)

    def inner_step(data1, data2, label):
        inner_mem = memory(
            name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)

        subseq = embedding_layer(input=data1, size=word_dim)
        seq = embedding_layer(input=data2, size=word_dim)
        nonseq = embedding_layer(input=label, size=word_dim)

        print_layer(input=[data1, seq, label, inner_mem])
        out = fc_layer(
            input=[subseq, seq, nonseq, inner_mem],
            size=hidden_dim,
            act=TanhActivation(),
            bias_attr=True,
            name='inner_rnn_state')
        return out

    decoder = recurrent_group(
61 62
        step=inner_step, name='inner',
        input=[subseq, StaticInput(seq), nonseq])
63 64 65 66 67 68 69 70 71
    last = last_seq(name="outer_rnn_state", input=decoder)
    context = simple_attention(
        encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
    return context


out = recurrent_group(
    name="outer",
    step=outer_step,
72
    input=[data1, data2, StaticInput(label), StaticInput(encoding)])
73 74 75 76 77 78

rep = last_seq(input=out)
prob = fc_layer(
    size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)

outputs(classification_cost(input=prob, label=label))