reshape_op.cc 4.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/reshape_op.h"

namespace paddle {
namespace operators {

class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
Y
Yibing Liu 已提交
30 31
    // input check
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null");
Y
Yibing Liu 已提交
32
    auto shape = ctx.Attr<std::vector<int>>("shape");
Y
Yibing Liu 已提交
33
    PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
Y
Yibing Liu 已提交
34
    for (auto dim : shape) {
Y
Yibing Liu 已提交
35
      PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive.");
Y
Yibing Liu 已提交
36
    }
Y
Yibing Liu 已提交
37 38 39 40
    // capacity check
    int64_t capacity =
        std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
    auto *in = ctx.Input<framework::Tensor>("X");
Y
Yibing Liu 已提交
41 42
    int64_t in_size = framework::product(in->dims());
    PADDLE_ENFORCE_EQ(capacity, in_size,
Y
Yibing Liu 已提交
43
                      "The size of Input(X) mismatches with Attr(shape).");
Y
Yibing Liu 已提交
44 45 46 47 48
    // resize output
    std::vector<int64_t> shape_int64(shape.size(), 0);
    std::transform(shape.begin(), shape.end(), shape_int64.begin(),
                   [](int a) { return static_cast<int64_t>(a); });
    auto out_dims = framework::make_ddim(shape_int64);
49
    ctx.Output<framework::LoDTensor>("Out")->Resize(out_dims);
Y
Yibing Liu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
  }
};

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReshapeOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor of reshape operator.");
    AddOutput("Out", "The output tensor of reshape operator.");
    AddAttr<std::vector<int>>("shape", "Target shape of reshape operator.");
    AddComment(R"DOC(Reshape operator

Y
Yibing Liu 已提交
63
Reshape Input(X) into the shape specified by Attr(shape).
Y
Yibing Liu 已提交
64 65 66 67 68 69

An example:
Given a 2-D tensor X with 2 rows and 2 columns

    [[1, 2], [3, 4]]

Y
Yibing Liu 已提交
70
with target shape = [1, 4], the reshape operator will transform 
Y
Yibing Liu 已提交
71 72 73 74
the tensor X into a 1-D tensor:

    [1, 2, 3, 4]

Y
Yibing Liu 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
Y
Yibing Liu 已提交
89 90 91
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
Y
Yibing Liu 已提交
92
    auto dims = ctx.Input<framework::Tensor>("X")->dims();
93
    auto *d_in = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
Y
Yibing Liu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    d_in->Resize(dims);
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
REGISTER_OP_CPU_KERNEL(reshape,
                       ops::ReshapeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    reshape_grad, ops::ReshapeGradKernel<paddle::platform::CPUPlace, float>);