ops.py 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle

from paddle.fluid.framework import Variable, in_dygraph_mode
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph import layers
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
import math
import six
F
FDInSky 已提交
24
import numpy as np
25 26 27
from functools import reduce

__all__ = [
28 29
    'roi_pool',
    'roi_align',
30 31
    'prior_box',
    'anchor_generator',
32
    #'generate_proposals',
W
wangguanzhong 已提交
33
    'iou_similarity',
34
    #'box_coder',
C
cnn 已提交
35
    'yolo_box',
36
    'multiclass_nms',
37
    'distribute_fpn_proposals',
38
    'collect_fpn_proposals',
39
    'matrix_nms',
40 41 42
]


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
def roi_pool(input,
             rois,
             output_size,
             spatial_scale=1.0,
             rois_num=None,
             name=None):
    """

    This operator implements the roi_pooling layer.
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).

    The operator has three steps:

        1. Dividing each region proposal into equal-sized sections with output_size(h, w);
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.

    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn

    Args:
        input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], 
            where N is the batch size, C is the input channel, H is Height, W is weight. 
            The data type is float32 or float64.
        rois (Tensor): ROIs (Regions of Interest) to pool over. 
            2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. 
            Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, 
            and (x2, y2) is the bottom right coordinates.
        output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
        rois_num (Tensor): The number of RoIs in each image. Default: None
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.


    Returns:
        Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]].


    Examples:

    ..  code-block:: python

        import paddle
87
        from ppdet.modeling import ops
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        paddle.enable_static()

        x = paddle.static.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
        rois = paddle.static.data(
                name='rois', shape=[None, 4], dtype='float32')
        rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')

        pool_out = ops.roi_pool(
                input=x,
                rois=rois,
                output_size=(1, 1),
                spatial_scale=1.0,
                rois_num=rois_num)
    """
    check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
    if in_dygraph_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        pool_out, argmaxes = core.ops.roi_pool(
            input, rois, rois_num, "pooled_height", pooled_height,
            "pooled_width", pooled_width, "spatial_scale", spatial_scale)
        return pool_out, argmaxes

    check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
    check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')

    inputs = {
        "X": input,
        "ROIs": rois,
    }
    if rois_num is not None:
        inputs['RoisNum'] = rois_num
    helper.append_op(
        type="roi_pool",
        inputs=inputs,
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out, argmaxes


def roi_align(input,
              rois,
              output_size,
              spatial_scale=1.0,
              sampling_ratio=-1,
              rois_num=None,
              name=None):
    """

    Region of interest align (also known as RoI align) is to perform
    bilinear interpolation on inputs of nonuniform sizes to obtain 
    fixed-size feature maps (e.g. 7*7)

    Dividing each region proposal into equal-sized sections with
    the pooled_width and pooled_height. Location remains the origin
    result.

    In each ROI bin, the value of the four regularly sampled locations 
    are computed directly through bilinear interpolation. The output is
    the mean of four locations.
    Thus avoid the misaligned problem. 

    Args:
        input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], 
            where N is the batch size, C is the input channel, H is Height, W is weight. 
            The data type is float32 or float64.
        rois (Tensor): ROIs (Regions of Interest) to pool over.It should be
            a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. 
            The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
172 173 174 175
        spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords 
            from their input scale to the scale used when pooling. Default: 1.0
        sampling_ratio(int32, optional): number of sampling points in the interpolation grid. 
            If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        rois_num (Tensor): The number of RoIs in each image. Default: None
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        Tensor:

        Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64.


    Examples:
        .. code-block:: python

            import paddle
191
            from ppdet.modeling import ops
192 193 194 195 196 197 198 199 200 201 202 203 204 205
            paddle.enable_static()

            x = paddle.static.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = paddle.static.data(
                name='rois', shape=[None, 4], dtype='float32')
            rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
            align_out = ops.roi_align(input=x,
                                               rois=rois,
                                               ouput_size=(7, 7),
                                               spatial_scale=0.5,
                                               sampling_ratio=-1,
                                               rois_num=rois_num)
    """
206
    check_type(output_size, 'output_size', (int, tuple), 'roi_align')
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size

    if in_dygraph_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        align_out = core.ops.roi_align(
            input, rois, rois_num, "pooled_height", pooled_height,
            "pooled_width", pooled_width, "spatial_scale", spatial_scale,
            "sampling_ratio", sampling_ratio)
        return align_out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'roi_align')
    check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align')
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
    align_out = helper.create_variable_for_type_inference(dtype)
    inputs = {
        "X": input,
        "ROIs": rois,
    }
    if rois_num is not None:
        inputs['RoisNum'] = rois_num
    helper.append_op(
        type="roi_align",
        inputs=inputs,
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
wangguanzhong 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def iou_similarity(x, y, box_normalized=True, name=None):
    """
    Computes intersection-over-union (IOU) between two box lists.
    Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
    boxes in 'Y' are shared by all instance of the batched inputs of X.
    Given two boxes A and B, the calculation of IOU is as follows:

    $$
    IOU(A, B) = 
    \\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)}
    $$

    Args:
        x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N 
             boxes, each box is represented as [xmin, ymin, xmax, ymax], 
             the shape of X is [N, 4]. [xmin, ymin] is the left top 
             coordinate of the box if the input is image feature map, they
             are close to the origin of the coordinate system. 
             [xmax, ymax] is the right bottom coordinate of the box.
             The data type is float32 or float64.
        y (Tensor): Box list Y holds M boxes, each box is represented as 
             [xmin, ymin, xmax, ymax], the shape of X is [N, 4]. 
             [xmin, ymin] is the left top coordinate of the box if the 
             input is image feature map, and [xmax, ymax] is the right 
             bottom coordinate of the box. The data type is float32 or float64.
        box_normalized(bool): Whether treat the priorbox as a normalized box.
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

    Returns:
        Tensor: The output of iou_similarity op, a tensor with shape [N, M] 
              representing pairwise iou scores. The data type is same with x.

    Examples:
        .. code-block:: python

            import paddle
284
            from ppdet.modeling import ops
W
wangguanzhong 已提交
285 286
            paddle.enable_static()

287 288
            x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
            y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
W
wangguanzhong 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            iou = ops.iou_similarity(x=x, y=y)
    """

    if in_dygraph_mode():
        out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized)
        return out

    helper = LayerHelper("iou_similarity", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={"box_normalized": box_normalized},
        outputs={"Out": out})
    return out


308 309 310 311 312 313 314 315 316 317 318 319
def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          rois_num_per_level=None,
                          name=None):
    """
    
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
320

321 322 323 324 325
    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id
326

F
FDInSky 已提交
327
    Args:
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
        rois_num_per_level(list, optional): The List of RoIs' numbers. 
            Each element is 1-D Tensor which contains the RoIs' number of each 
            image on each level and the shape is [B] and data type is 
            int32, B is the number of images. If it is not None then return 
            a 1-D Tensor contains the output RoIs' number of each image and 
            the shape is [B]. Default: None
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
345 346
            None by default.

347 348
    Returns:
        Variable:
349

350 351
        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 
352

353 354 355
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each 
        image. The shape is [B] and data type is int32. B is the number of 
        images. 
356

357 358 359 360
    Examples:
        .. code-block:: python
           
            import paddle
361
            from ppdet.modeling import ops
362 363 364 365
            paddle.enable_static()
            multi_rois = []
            multi_scores = []
            for i in range(4):
366
                multi_rois.append(paddle.static.data(
367 368
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
            for i in range(4):
369
                multi_scores.append(paddle.static.data(
370
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
371

372
            fpn_rois = ops.collect_fpn_proposals(
373 374 375 376 377
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
F
FDInSky 已提交
378
    """
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

    if in_dygraph_mode():
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
        output_rois, rois_num = core.ops.collect_fpn_proposals(
            input_rois, input_scores, rois_num_per_level, *attrs)

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
    helper.append_op(
        type='collect_fpn_proposals',
        inputs=inputs,
        outputs=outputs,
        attrs={'post_nms_topN': post_nms_top_n})
    if rois_num_per_level is not None:
        return output_rois, rois_num
    return output_rois
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             rois_num=None,
                             name=None):
    """
    
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
    
    .. math::

        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}

        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.

    Args:

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

    Returns:
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is 
        the RoIs' number in each image on the corresponding level. The shape 
        is [B] and data type of int32. B is the number of images


    Examples:
        .. code-block:: python

            import paddle
481
            from ppdet.modeling import ops
482 483 484
            paddle.enable_static()
            fpn_rois = paddle.static.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
485
            multi_rois, restore_ind = ops.distribute_fpn_proposals(
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
    """
    num_lvl = max_level - min_level + 1

    if in_dygraph_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
                 refer_level, 'refer_scale', refer_scale)
        multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals(
            fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
        return multi_rois, restore_ind, rois_num_per_level

    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
    helper = LayerHelper('distribute_fpn_proposals', **locals())
    dtype = helper.input_dtype('fpn_rois')
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]

    restore_ind = helper.create_variable_for_type_inference(dtype='int32')

    inputs = {'FpnRois': fpn_rois}
    outputs = {
        'MultiFpnRois': multi_rois,
        'RestoreIndex': restore_ind,
    }

    if rois_num is not None:
        inputs['RoisNum'] = rois_num
        rois_num_per_level = [
            helper.create_variable_for_type_inference(dtype='int32')
            for i in range(num_lvl)
        ]
        outputs['MultiLevelRoIsNum'] = rois_num_per_level

    helper.append_op(
        type='distribute_fpn_proposals',
        inputs=inputs,
        outputs=outputs,
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    if rois_num is not None:
        return multi_rois, restore_ind, rois_num_per_level
    return multi_rois, restore_ind
C
cnn 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625


def yolo_box(
        x,
        origin_shape,
        anchors,
        class_num,
        conf_thresh,
        downsample_ratio,
        clip_bbox=True,
        scale_x_y=1.,
        name=None, ):
    """

    This operator generates YOLO detection boxes from output of YOLOv3 network.
     
     The output of previous network is in shape [N, C, H, W], while H and W
     should be the same, H and W specify the grid size, each grid point predict
     given number boxes, this given number, which following will be represented as S,
     is specified by the number of anchors. In the second dimension(the channel
     dimension), C should be equal to S * (5 + class_num), class_num is the object
     category number of source dataset(such as 80 in coco dataset), so the
     second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
     also includes confidence score of the box and class one-hot key of each anchor
     box.
     Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
     predictions should be as follows:
     $$
     b_x = \\sigma(t_x) + c_x
     $$
     $$
     b_y = \\sigma(t_y) + c_y
     $$
     $$
     b_w = p_w e^{t_w}
     $$
     $$
     b_h = p_h e^{t_h}
     $$
     in the equation above, :math:`c_x, c_y` is the left top corner of current grid
     and :math:`p_w, p_h` is specified by anchors.
     The logistic regression value of the 5th channel of each anchor prediction boxes
     represents the confidence score of each prediction box, and the logistic
     regression value of the last :attr:`class_num` channels of each anchor prediction
     boxes represents the classifcation scores. Boxes with confidence scores less than
     :attr:`conf_thresh` should be ignored, and box final scores is the product of
     confidence scores and classification scores.
     $$
     score_{pred} = score_{conf} * score_{class}
     $$

    Args:
        x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W].
                    The second dimension(C) stores box locations, confidence score and
                    classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network.
                    The data type is float32 or float64.
        origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2].
                    This tensor holds height and width of each input image used for resizing output box in input image
                    scale. The data type is int32.
        anchors (list|tuple): The anchor width and height, it will be parsed pair by pair.
        class_num (int): The number of classes to predict.
        conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores
                    under threshold should be ignored.
        downsample_ratio (int): The downsample ratio from network input to YoloBox operator input,
                    so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators.
        clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true.
        scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0.
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
                       please refer to :ref:`api_guide_Name`

    Returns:
        boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,  N is the batch num,
                    M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes.
        scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes,  N is the batch num,
                    M is output box number.
                    
    Raises:
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:

    .. code-block:: python

        import paddle
626
        from ppdet.modeling import ops
C
cnn 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64')
        anchors = [10, 13, 16, 30, 33, 23]
        boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolo_box must be an integer")
    if not isinstance(conf_thresh, float):
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")

    if in_dygraph_mode():
        attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh',
                 conf_thresh, 'downsample_ratio', downsample_ratio, 'clip_bbox',
                 clip_bbox, 'scale_x_y', scale_x_y)
        boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs)
        return boxes, scores

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
        "conf_thresh": conf_thresh,
        "downsample_ratio": downsample_ratio,
        "clip_bbox": clip_bbox,
        "scale_x_y": scale_x_y,
    }

    helper.append_op(
        type='yolo_box',
        inputs={
            "X": x,
            "ImgSize": origin_shape,
        },
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores
675 676


677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
              aspect_ratios=[1.],
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
              min_max_aspect_ratios_order=False,
              name=None):
    """

    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Parameters:
       input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
       image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
            Default: None.
       aspect_ratios(list|tuple|float): the aspect ratios of generated
            prior boxes. Default: [1.].
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|tuple): Prior boxes step across width and height, If
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
       name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tuple: A tuple with two Variable (boxes, variances)

        boxes(Tensor): the output prior boxes of PriorBox.
        4-D tensor, the layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total box count of each position of input.

        variances(Tensor): the expanded variances of PriorBox.
        4-D tensor, the layput is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total box count of each position of input

    Examples:
        .. code-block:: python

        import paddle
        from ppdet.modeling import ops

        paddle.enable_static()
        input = paddle.static.data(name="input", shape=[None,3,6,9])
        image = paddle.static.data(name="image", shape=[None,3,9,12])
        box, var = ops.prior_box(
                    input=input,
                    image=image,
                    min_sizes=[100.],
                    clip=True,
                    flip=True)
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

    cur_max_sizes = None
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
        cur_max_sizes = max_sizes

    if in_dygraph_mode():
        attrs = [
            'min_sizes', min_sizes, 'aspect_ratios', aspect_ratios, 'variances',
            variance, 'flip', flip, 'clip', clip, 'step_w', steps[0], 'step_h',
            steps[1], 'offset', offset, 'min_max_aspect_ratios_order',
            min_max_aspect_ratios_order
        ]
        if cur_max_sizes is not None:
            attrs.extend('max_sizes', max_sizes)
        attrs = tuple(attrs)
        box, var = core.ops.prior_box(input, image, *attrs)
        return box, var

    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
    }

    if cur_max_sizes is not None:
        attrs['max_sizes'] = cur_max_sizes

    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """

    This op generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Tensor): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 

    Returns:
        Tuple:

        Anchors(Tensor): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.

        Variances(Tensor): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            import paddle
            from ppdet.modeling import ops

            paddle.enable_static()
            conv1 = paddle.static.data(name='input', shape=[None, 48, 16, 16], dtype='float32')
            anchor, var = ops.anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    if in_dygraph_mode():
        attrs = ('anchor_sizes', anchor_sizes, 'aspect_ratios', aspect_ratios,
                 'variances', variance, 'stride', stride, 'offset', offset)
        anchor, var = core.ops.anchor_generator(input, *attrs)
        return anchor, var

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var


def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
                   nms_threshold=0.3,
                   normalized=True,
                   nms_eta=1.,
                   background_label=0,
                   return_index=False,
                   rois_num=None,
                   name=None):
    """
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the
                           class number
        scores (Tensor): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
        name(str): Name of the multiclass nms op. Default: None.
    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.
    Examples:
        .. code-block:: python

            import paddle
            from ppdet.modeling import ops
            boxes = paddle.static.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = paddle.static.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = ops.multiclass_nms(bboxes=boxes,
                                            scores=scores,
                                            background_label=0,
                                            score_threshold=0.5,
                                            nms_top_k=400,
                                            nms_threshold=0.3,
                                            keep_top_k=200,
                                            normalized=False,
                                            return_index=True)
    """
    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
                 nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
                 'normalized', normalized)
        output, index, nms_rois_num = core.ops.multiclass_nms3(bboxes, scores,
                                                               rois_num, *attrs)
        if return_index:
            return output, index, nms_rois_num
        else:
            return output, nms_rois_num

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')

    inputs = {'BBoxes': bboxes, 'Scores': scores}
    outputs = {'Out': output, 'Index': index}

    if rois_num is not None:
        inputs['RoisNum'] = rois_num
        nms_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        outputs['NmsRoisNum'] = nms_rois_num

    helper.append_op(
        type="multiclass_nms3",
        inputs=inputs,
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs=outputs)
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index and rois_num is not None:
        return output, index, nms_rois_num
    elif return_index and rois_num is None:
        return output, index
    elif not return_index and rois_num is not None:
        return output, nms_rois_num
    return output


1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               return_rois_num=True,
               name=None):
    """
    **Matrix NMS**
    This operator does matrix non maximum suppression (NMS).
    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
    Args:
        bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Tensor): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        return_rois_num(bool): whether return rois_num. Default: True
        name(str): Name of the matrix nms op. Default: None.
    Returns:
        A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
        otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
        Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})
        Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.
        rois_num (Tensor): A 1-D Tensor with shape [N] containing 
            the number of detected boxes in each image.
    Examples:
        .. code-block:: python
            import paddle
            from ppdet.modeling import ops
            boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = paddle.static.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
                                 score_threshold=0.5, post_threshold=0.1,
                                 nms_top_k=400, keep_top_k=200, normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    if in_dygraph_mode():
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'post_threshold', post_threshold, 'nms_top_k',
                 nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian',
                 use_gaussian, 'keep_top_k', keep_top_k, 'normalized',
                 normalized)
        out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs)
        if return_index:
            if return_rois_num:
                return out, index, rois_num
            return out, index
        if return_rois_num:
            return out, rois_num
        return out

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    outputs = {'Out': output, 'Index': index}
    if return_rois_num:
        rois_num = helper.create_variable_for_type_inference(dtype='int')
        outputs['RoisNum'] = rois_num

    helper.append_op(
        type="matrix_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'post_threshold': post_threshold,
            'nms_top_k': nms_top_k,
            'gaussian_sigma': gaussian_sigma,
            'use_gaussian': use_gaussian,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs=outputs)
    output.stop_gradient = True

    if return_index:
        if return_rois_num:
            return output, index, rois_num
        return output, index
    if return_rois_num:
        return output, rois_num
    return output