layers.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from numbers import Integral
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from ppdet.core.workspace import register, serializable
from ppdet.py_op.target import generate_rpn_anchor_target, generate_proposal_target, generate_mask_target
from ppdet.py_op.post_process import bbox_post_process
22
from . import ops
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


@register
@serializable
class AnchorGeneratorRPN(object):
    def __init__(self,
                 anchor_sizes=[32, 64, 128, 256, 512],
                 aspect_ratios=[0.5, 1.0, 2.0],
                 stride=[16.0, 16.0],
                 variance=[1.0, 1.0, 1.0, 1.0],
                 anchor_start_size=None):
        super(AnchorGeneratorRPN, self).__init__()
        self.anchor_sizes = anchor_sizes
        self.aspect_ratios = aspect_ratios
        self.stride = stride
        self.variance = variance
        self.anchor_start_size = anchor_start_size

    def __call__(self, input, level=None):
        anchor_sizes = self.anchor_sizes if (
            level is None or self.anchor_start_size is None) else (
                self.anchor_start_size * 2**level)
        stride = self.stride if (
            level is None or self.anchor_start_size is None) else (
                self.stride[0] * (2.**level), self.stride[1] * (2.**level))
48
        anchor, var = ops.anchor_generator(
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            input=input,
            anchor_sizes=anchor_sizes,
            aspect_ratios=self.aspect_ratios,
            stride=stride,
            variance=self.variance)
        return anchor, var


@register
@serializable
class AnchorTargetGeneratorRPN(object):
    def __init__(self,
                 batch_size_per_im=256,
                 straddle_thresh=0.,
                 fg_fraction=0.5,
                 positive_overlap=0.7,
                 negative_overlap=0.3,
                 use_random=True):
        super(AnchorTargetGeneratorRPN, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.straddle_thresh = straddle_thresh
        self.fg_fraction = fg_fraction
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap
        self.use_random = use_random

    def __call__(self, cls_logits, bbox_pred, anchor_box, gt_boxes, is_crowd,
                 im_info):
        anchor_box = anchor_box.numpy()
        gt_boxes = gt_boxes.numpy()
        is_crowd = is_crowd.numpy()
        im_info = im_info.numpy()
        loc_indexes, score_indexes, tgt_labels, tgt_bboxes, bbox_inside_weights = generate_rpn_anchor_target(
            anchor_box, gt_boxes, is_crowd, im_info, self.straddle_thresh,
            self.batch_size_per_im, self.positive_overlap,
            self.negative_overlap, self.fg_fraction, self.use_random)

        loc_indexes = to_variable(loc_indexes)
        score_indexes = to_variable(score_indexes)
        tgt_labels = to_variable(tgt_labels)
        tgt_bboxes = to_variable(tgt_bboxes)
        bbox_inside_weights = to_variable(bbox_inside_weights)

        loc_indexes.stop_gradient = True
        score_indexes.stop_gradient = True
        tgt_labels.stop_gradient = True

        cls_logits = fluid.layers.reshape(x=cls_logits, shape=(-1, ))
        bbox_pred = fluid.layers.reshape(x=bbox_pred, shape=(-1, 4))
        pred_cls_logits = fluid.layers.gather(cls_logits, score_indexes)
        pred_bbox_pred = fluid.layers.gather(bbox_pred, loc_indexes)

        return pred_cls_logits, pred_bbox_pred, tgt_labels, tgt_bboxes, bbox_inside_weights


@register
@serializable
class AnchorGeneratorYOLO(object):
    def __init__(self,
                 anchors=[
                     10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90,
                     156, 198, 373, 326
                 ],
                 anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]]):
        super(AnchorGeneratorYOLO, self).__init__()
        self.anchors = anchors
        self.anchor_masks = anchor_masks

    def __call__(self):
        anchor_num = len(self.anchors)
        mask_anchors = []
        for i in range(len(self.anchor_masks)):
            mask_anchor = []
            for m in self.anchor_masks[i]:
                assert m < anchor_num, "anchor mask index overflow"
                mask_anchor.extend(self.anchors[2 * m:2 * m + 2])
            mask_anchors.append(mask_anchor)
        return self.anchors, self.anchor_masks, mask_anchors


@register
@serializable
class AnchorTargetGeneratorYOLO(object):
    def __init__(self,
                 ignore_thresh=0.7,
                 downsample_ratio=32,
                 label_smooth=True):
        super(AnchorTargetGeneratorYOLO, self).__init__()
        self.ignore_thresh = ignore_thresh
        self.downsample_ratio = downsample_ratio
        self.label_smooth = label_smooth

    def __call__(self, ):
        # TODO: split yolov3_loss into here 
        outs = {
            'ignore_thresh': self.ignore_thresh,
            'downsample_ratio': self.downsample_ratio,
            'label_smooth': self.label_smooth
        }
        return outs


@register
@serializable
class ProposalGenerator(object):
    __append_doc__ = True

    def __init__(self,
                 train_pre_nms_top_n=12000,
                 train_post_nms_top_n=2000,
                 infer_pre_nms_top_n=6000,
                 infer_post_nms_top_n=1000,
                 nms_thresh=.5,
                 min_size=.1,
                 eta=1.):
        super(ProposalGenerator, self).__init__()
        self.train_pre_nms_top_n = train_pre_nms_top_n
        self.train_post_nms_top_n = train_post_nms_top_n
        self.infer_pre_nms_top_n = infer_pre_nms_top_n
        self.infer_post_nms_top_n = infer_post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.eta = eta

    def __call__(self,
                 scores,
                 bbox_deltas,
                 anchors,
                 variances,
                 im_info,
                 mode='train'):
        pre_nms_top_n = self.train_pre_nms_top_n if mode == 'train' else self.infer_pre_nms_top_n
        post_nms_top_n = self.train_post_nms_top_n if mode == 'train' else self.infer_post_nms_top_n
        rpn_rois, rpn_rois_prob, rpn_rois_num = fluid.layers.generate_proposals(
            scores,
            bbox_deltas,
            im_info,
            anchors,
            variances,
            pre_nms_top_n=pre_nms_top_n,
            post_nms_top_n=post_nms_top_n,
            nms_thresh=self.nms_thresh,
            min_size=self.min_size,
            eta=self.eta,
            return_rois_num=True)
        return rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n


@register
@serializable
class ProposalTargetGenerator(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=[.5, ],
                 bg_thresh_hi=[.5, ],
                 bg_thresh_lo=[0., ],
                 bbox_reg_weights=[[0.1, 0.1, 0.2, 0.2]],
                 num_classes=81,
                 use_random=True,
                 is_cls_agnostic=False,
                 is_cascade_rcnn=False):
        super(ProposalTargetGenerator, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh_hi = bg_thresh_hi
        self.bg_thresh_lo = bg_thresh_lo
        self.bbox_reg_weights = bbox_reg_weights
        self.num_classes = num_classes
        self.use_random = use_random
        self.is_cls_agnostic = is_cls_agnostic
        self.is_cascade_rcnn = is_cascade_rcnn

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 gt_classes,
                 is_crowd,
                 gt_boxes,
                 im_info,
                 stage=0):
        rpn_rois = rpn_rois.numpy()
        rpn_rois_num = rpn_rois_num.numpy()
        gt_classes = gt_classes.numpy()
        gt_boxes = gt_boxes.numpy()
        is_crowd = is_crowd.numpy()
        im_info = im_info.numpy()
        outs = generate_proposal_target(
            rpn_rois, rpn_rois_num, gt_classes, is_crowd, gt_boxes, im_info,
            self.batch_size_per_im, self.fg_fraction, self.fg_thresh[stage],
            self.bg_thresh_hi[stage], self.bg_thresh_lo[stage],
            self.bbox_reg_weights[stage], self.num_classes, self.use_random,
            self.is_cls_agnostic, self.is_cascade_rcnn)
        outs = [to_variable(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
@serializable
class MaskTargetGenerator(object):
    __shared__ = ['num_classes', 'mask_resolution']

    def __init__(self, num_classes=81, mask_resolution=14):
        super(MaskTargetGenerator, self).__init__()
        self.num_classes = num_classes
        self.mask_resolution = mask_resolution

    def __call__(self, im_info, gt_classes, is_crowd, gt_segms, rois, rois_num,
                 labels_int32):
        im_info = im_info.numpy()
        gt_classes = gt_classes.numpy()
        is_crowd = is_crowd.numpy()
        gt_segms = gt_segms.numpy()
        rois = rois.numpy()
        rois_num = rois_num.numpy()
        labels_int32 = labels_int32.numpy()
        outs = generate_mask_target(im_info, gt_classes, is_crowd, gt_segms,
                                    rois, rois_num, labels_int32,
                                    self.num_classes, self.mask_resolution)

        outs = [to_variable(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
class RoIExtractor(object):
    def __init__(self,
                 resolution=14,
                 sampling_ratio=0,
                 canconical_level=4,
                 canonical_size=224,
                 start_level=0,
                 end_level=3):
        super(RoIExtractor, self).__init__()
        self.resolution = resolution
        self.sampling_ratio = sampling_ratio
        self.canconical_level = canconical_level
        self.canonical_size = canonical_size
        self.start_level = start_level
        self.end_level = end_level

    def __call__(self, feats, rois, spatial_scale):
        roi, rois_num = rois
        cur_l = 0
        if self.start_level == self.end_level:
301
            rois_feat = ops.roi_align(
302 303 304 305 306 307 308 309 310
                feats[self.start_level],
                roi,
                self.resolution,
                spatial_scale,
                rois_num=rois_num)
            return rois_feat
        offset = 2
        k_min = self.start_level + offset
        k_max = self.end_level + offset
311
        rois_dist, restore_index, rois_num_dist = ops.distribute_fpn_proposals(
312 313 314 315 316 317 318 319 320
            roi,
            k_min,
            k_max,
            self.canconical_level,
            self.canonical_size,
            rois_num=rois_num)

        rois_feat_list = []
        for lvl in range(self.start_level, self.end_level + 1):
321
            roi_feat = ops.roi_align(
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
                feats[lvl],
                rois_dist[lvl],
                self.resolution,
                spatial_scale[lvl],
                sampling_ratio=self.sampling_ratio,
                rois_num=rois_num_dist[lvl])
            rois_feat_list.append(roi_feat)
        rois_feat_shuffle = fluid.layers.concat(rois_feat_list)
        rois_feat = fluid.layers.gather(rois_feat_shuffle, restore_index)

        return rois_feat


@register
@serializable
class DecodeClipNms(object):
    __shared__ = ['num_classes']

    def __init__(
            self,
            num_classes=81,
            keep_top_k=100,
            score_threshold=0.05,
            nms_threshold=0.5, ):
        super(DecodeClipNms, self).__init__()
        self.num_classes = num_classes
        self.keep_top_k = keep_top_k
        self.score_threshold = score_threshold
        self.nms_threshold = nms_threshold

    def __call__(self, bboxes, bbox_prob, bbox_delta, im_info):
        bboxes_np = (i.numpy() for i in bboxes)
        # bbox, bbox_num
        outs = bbox_post_process(bboxes_np,
                                 bbox_prob.numpy(),
                                 bbox_delta.numpy(),
                                 im_info.numpy(), self.keep_top_k,
                                 self.score_threshold, self.nms_threshold,
                                 self.num_classes)
        outs = [to_variable(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
@serializable
class MultiClassNMS(object):
370
    __op__ = ops.multiclass_nms
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
                 normalized=False,
                 nms_eta=1.0,
                 background_label=0):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.background_label = background_label


391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
@register
@serializable
class MatrixNMS(object):
    __op__ = ops.matrix_nms
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 post_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 use_gaussian=False,
                 gaussian_sigma=2.,
                 normalized=False,
                 background_label=0):
        super(MatrixNMS, self).__init__()
        self.score_threshold = score_threshold
        self.post_threshold = post_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.use_gaussian = use_gaussian
        self.gaussian_sigma = gaussian_sigma
        self.background_label = background_label


417 418 419 420 421 422 423 424 425 426 427 428 429
@register
@serializable
class YOLOBox(object):
    def __init__(
            self,
            conf_thresh=0.005,
            downsample_ratio=32,
            clip_bbox=True, ):
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio
        self.clip_bbox = clip_bbox

    def __call__(self, x, img_size, anchors, num_classes, stage=0):
W
wangguanzhong 已提交
430 431
        outs = ops.yolo_box(x, img_size, anchors, num_classes, self.conf_thresh,
                            self.downsample_ratio // 2**stage, self.clip_bbox)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        return outs


@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars