softmax_with_cost_op.cc 3.1 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
:A
limitations under the License. */

#include "paddle/operators/softmax_op.h"

namespace paddle {
namespace operators {

class SoftmaxWithLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    auto logits = ctx.Input<Tensor>("logits");
    PADDLE_ENFORCE(logits->dims().size() == 2UL,
                   "The input of softmax_with_loss_op should be a 2-d tensor.");
    PADDLE_ENFORCE(ctx.Input<Tensor>("lables")->dims().size() == 1UL,
                   "The label should be a 1-d tensor.");
    ctx.Output<Tensor>("loss")->Resize({logits->dims()[0]});
  }
};

class SoftmaxWithLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftmaxWithLossOpMaker(framework::OpProto *proto,
                         framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("logits",
             "The unscaled log probabilities which is a 2-D tensor<float> with"
             "shape [N x K]. N is the batch_size, and K is the class number.");
    AddInput("label", "The ground truth. A 1-D tensor<int> with shape N.");
    AddOutput("loss", "A 1-D tensor<float> with shape N.");
    AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.

Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.

This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
)DOC");
  }
};

class SoftmaxWithLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(softmax, ops::SoftmaxWithLossOp, ops::SoftmaxWithLossOpMaker,
            softmax_grad, ops::SoftmaxWithLossOpGrad);
REGISTER_OP_CPU_KERNEL(
    softmax, ops::SoftmaxWithLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
    ops::SoftmaxWithLossGradKernel<paddle::platform::CPUPlace, float>);