mask_rcnn.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from ppdet.core.workspace import register

__all__ = ['MaskRCNN']


@register
class MaskRCNN(object):
    """
    Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870
    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        mask_assigner (object): `MaskAssigner` instance
        mask_head (object): `MaskHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'mask_assigner', 'mask_head', 'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 bbox_head='BBoxHead',
                 bbox_assigner='BBoxAssigner',
                 roi_extractor='RoIAlign',
                 mask_assigner='MaskAssigner',
                 mask_head='MaskHead',
                 fpn=None):
        super(MaskRCNN, self).__init__()
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.mask_assigner = mask_assigner
        self.mask_head = mask_head
        self.fpn = fpn

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        assert mode in ['train', 'test'], \
            "only 'train' and 'test' mode is supported"
        if mode == 'train':
            required_fields = [
                'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info'
            ]
        else:
            required_fields = ['im_shape', 'im_info']
        for var in required_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)
        im_info = feed_vars['im_info']

        body_feats = self.backbone(im)

        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # RPN proposals
        rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, feed_vars['gt_box'],
                                              feed_vars['is_crowd'])

            outs = self.bbox_assigner(
                rpn_rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_boxes=feed_vars['gt_box'],
                im_info=feed_vars['im_info'])
            rois = outs[0]
            labels_int32 = outs[1]

            if self.fpn is None:
                last_feat = body_feats[list(body_feats.keys())[-1]]
                roi_feat = self.roi_extractor(last_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            loss = self.bbox_head.get_loss(roi_feat, labels_int32, *outs[2:])
            loss.update(rpn_loss)

            mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
                rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_segms=feed_vars['gt_mask'],
                im_info=feed_vars['im_info'],
                labels_int32=labels_int32)
            if self.fpn is None:
                bbox_head_feat = self.bbox_head.get_head_feat()
                feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
            else:
                feat = self.roi_extractor(
                    body_feats, mask_rois, spatial_scale, is_mask=True)

            mask_loss = self.mask_head.get_loss(feat, mask_int32)
            loss.update(mask_loss)

            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss

        else:

            if self.fpn is None:
                last_feat = body_feats[list(body_feats.keys())[-1]]
                roi_feat = self.roi_extractor(last_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            bbox_pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
                                                      feed_vars['im_shape'])
            bbox_pred = bbox_pred['bbox']

            # share weight
            bbox_shape = fluid.layers.shape(bbox_pred)
            bbox_size = fluid.layers.reduce_prod(bbox_shape)
            bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
            size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
            cond = fluid.layers.less_than(x=bbox_size, y=size)

            mask_pred = fluid.layers.create_global_var(
152 153 154 155 156
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=False,
                name='mask_pred')
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

            with fluid.layers.control_flow.Switch() as switch:
                with switch.case(cond):
                    fluid.layers.assign(input=bbox_pred, output=mask_pred)
                with switch.default():
                    bbox = fluid.layers.slice(
                        bbox_pred, [1], starts=[2], ends=[6])

                    im_scale = fluid.layers.slice(
                        im_info, [1], starts=[2], ends=[3])
                    im_scale = fluid.layers.sequence_expand(im_scale, bbox)

                    mask_rois = bbox * im_scale
                    if self.fpn is None:
                        mask_feat = self.roi_extractor(last_feat, mask_rois)
                        mask_feat = self.bbox_head.get_head_feat(mask_feat)
                    else:
                        mask_feat = self.roi_extractor(
                            body_feats, mask_rois, spatial_scale, is_mask=True)

                    mask_out = self.mask_head.get_prediction(mask_feat, bbox)
                    fluid.layers.assign(input=mask_out, output=mask_pred)
            return {'bbox': bbox_pred, 'mask': mask_pred}

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')