resnet.py 11.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import numpy as np
from paddle import ParamAttr
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm
from paddle.nn import MaxPool2D

from ppdet.core.workspace import register, serializable

from paddle.regularizer import L2Decay
from .name_adapter import NameAdapter
from numbers import Integral
F
Feng Ni 已提交
28
from ppdet.modeling.layers import DeformableConvV2
Q
qingqing01 已提交
29

30 31
__all__ = ['ResNet', 'Res5Head']

Q
qingqing01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44

class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 name_adapter,
                 act=None,
                 norm_type='bn',
                 norm_decay=0.,
                 freeze_norm=True,
                 lr=1.0,
F
Feng Ni 已提交
45
                 dcn_v2=False,
Q
qingqing01 已提交
46 47 48 49 50 51
                 name=None):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn']
        self.norm_type = norm_type
        self.act = act

F
Feng Ni 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        if not dcn_v2:
            self.conv = Conv2D(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    learning_rate=lr, name=name + "_weights"),
                bias_attr=False)
        else:
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    learning_rate=lr, name=name + '_weights'),
                bias_attr=False,
                name=name)
Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        bn_name = name_adapter.fix_conv_norm_name(name)
        norm_lr = 0. if freeze_norm else lr
        param_attr = ParamAttr(
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay),
            name=bn_name + "_scale",
            trainable=False if freeze_norm else True)
        bias_attr = ParamAttr(
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay),
            name=bn_name + "_offset",
            trainable=False if freeze_norm else True)

        global_stats = True if freeze_norm else False
        self.norm = BatchNorm(
            ch_out,
            act=act,
            param_attr=param_attr,
            bias_attr=bias_attr,
            use_global_stats=global_stats,
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        norm_params = self.norm.parameters()

        if freeze_norm:
            for param in norm_params:
                param.stop_gradient = True

    def forward(self, inputs):
        out = self.conv(inputs)
        if self.norm_type == 'bn':
            out = self.norm(out)
        return out


class BottleNeck(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 stride,
                 shortcut,
                 name_adapter,
                 name,
                 variant='b',
                 lr=1.0,
                 norm_type='bn',
                 norm_decay=0.,
F
Feng Ni 已提交
123 124
                 freeze_norm=True,
                 dcn_v2=False):
Q
qingqing01 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        super(BottleNeck, self).__init__()
        if variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = name_adapter.fix_bottleneck_name(name)

        self.shortcut = shortcut
        if not shortcut:
            self.short = ConvNormLayer(
                ch_in=ch_in,
                ch_out=ch_out * 4,
                filter_size=1,
                stride=stride,
                name_adapter=name_adapter,
                norm_type=norm_type,
                norm_decay=norm_decay,
                freeze_norm=freeze_norm,
                lr=lr,
                name=shortcut_name)

        self.branch2a = ConvNormLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=1,
            stride=stride1,
            name_adapter=name_adapter,
            act='relu',
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name1)

        self.branch2b = ConvNormLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=3,
            stride=stride2,
            name_adapter=name_adapter,
            act='relu',
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
F
Feng Ni 已提交
172
            dcn_v2=dcn_v2,
Q
qingqing01 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
            name=conv_name2)

        self.branch2c = ConvNormLayer(
            ch_in=ch_out,
            ch_out=ch_out * 4,
            filter_size=1,
            stride=1,
            name_adapter=name_adapter,
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name3)

    def forward(self, inputs):

        out = self.branch2a(inputs)
        out = self.branch2b(out)
        out = self.branch2c(out)
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        out = paddle.add(x=out, y=short)
        out = F.relu(out)

        return out


class Blocks(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 count,
                 name_adapter,
                 stage_num,
                 lr=1.0,
                 norm_type='bn',
                 norm_decay=0.,
F
Feng Ni 已提交
213 214
                 freeze_norm=True,
                 dcn_v2=False):
Q
qingqing01 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        super(Blocks, self).__init__()

        self.blocks = []
        for i in range(count):
            conv_name = name_adapter.fix_layer_warp_name(stage_num, count, i)

            block = self.add_sublayer(
                conv_name,
                BottleNeck(
                    ch_in=ch_in if i == 0 else ch_out * 4,
                    ch_out=ch_out,
                    stride=2 if i == 0 and stage_num != 2 else 1,
                    shortcut=False if i == 0 else True,
                    name_adapter=name_adapter,
                    name=conv_name,
                    variant=name_adapter.variant,
                    lr=lr,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
F
Feng Ni 已提交
234 235
                    freeze_norm=freeze_norm,
                    dcn_v2=dcn_v2))
Q
qingqing01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            self.blocks.append(block)

    def forward(self, inputs):
        block_out = inputs
        for block in self.blocks:
            block_out = block(block_out)
        return block_out


ResNet_cfg = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}


@register
@serializable
class ResNet(nn.Layer):
    def __init__(self,
                 depth=50,
                 variant='b',
                 lr_mult=1.,
                 norm_type='bn',
                 norm_decay=0,
                 freeze_norm=True,
                 freeze_at=0,
                 return_idx=[0, 1, 2, 3],
F
Feng Ni 已提交
260
                 dcn_v2_stages=[-1],
Q
qingqing01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                 num_stages=4):
        super(ResNet, self).__init__()
        self.depth = depth
        self.variant = variant
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.freeze_at = freeze_at
        if isinstance(return_idx, Integral):
            return_idx = [return_idx]
        assert max(return_idx) < num_stages, \
            'the maximum return index must smaller than num_stages, ' \
            'but received maximum return index is {} and num_stages ' \
            'is {}'.format(max(return_idx), num_stages)
        self.return_idx = return_idx
        self.num_stages = num_stages

F
Feng Ni 已提交
278 279 280 281 282
        if isinstance(dcn_v2_stages, Integral):
            dcn_v2_stages = [dcn_v2_stages]
        assert max(dcn_v2_stages) < num_stages
        self.dcn_v2_stages = dcn_v2_stages

Q
qingqing01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        block_nums = ResNet_cfg[depth]
        na = NameAdapter(self)

        conv1_name = na.fix_c1_stage_name()
        if variant in ['c', 'd']:
            conv_def = [
                [3, 32, 3, 2, "conv1_1"],
                [32, 32, 3, 1, "conv1_2"],
                [32, 64, 3, 1, "conv1_3"],
            ]
        else:
            conv_def = [[3, 64, 7, 2, conv1_name]]
        self.conv1 = nn.Sequential()
        for (c_in, c_out, k, s, _name) in conv_def:
            self.conv1.add_sublayer(
                _name,
                ConvNormLayer(
                    ch_in=c_in,
                    ch_out=c_out,
                    filter_size=k,
                    stride=s,
                    name_adapter=na,
                    act='relu',
                    norm_type=norm_type,
                    norm_decay=norm_decay,
                    freeze_norm=freeze_norm,
                    lr=lr_mult,
                    name=_name))

        self.pool = MaxPool2D(kernel_size=3, stride=2, padding=1)

        ch_in_list = [64, 256, 512, 1024]
        ch_out_list = [64, 128, 256, 512]

        self.res_layers = []
        for i in range(num_stages):
            stage_num = i + 2
            res_name = "res{}".format(stage_num)
            res_layer = self.add_sublayer(
                res_name,
                Blocks(
                    ch_in_list[i],
                    ch_out_list[i],
                    count=block_nums[i],
                    name_adapter=na,
                    stage_num=stage_num,
                    lr=lr_mult,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
F
Feng Ni 已提交
332 333
                    freeze_norm=freeze_norm,
                    dcn_v2=(i in self.dcn_v2_stages)))
Q
qingqing01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
            self.res_layers.append(res_layer)

    def forward(self, inputs):
        x = inputs['image']
        conv1 = self.conv1(x)
        x = self.pool(conv1)
        outs = []
        for idx, stage in enumerate(self.res_layers):
            x = stage(x)
            if idx == self.freeze_at:
                x.stop_gradient = True
            if idx in self.return_idx:
                outs.append(x)
        return outs
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364


@register
class Res5Head(nn.Layer):
    def __init__(self, feat_in=1024, feat_out=512):
        super(Res5Head, self).__init__()
        na = NameAdapter(self)
        self.res5_conv = []
        self.res5 = self.add_sublayer(
            'res5_roi_feat',
            Blocks(
                feat_in, feat_out, count=3, name_adapter=na, stage_num=5))
        self.feat_out = feat_out * 4

    def forward(self, roi_feat, stage=0):
        y = self.res5(roi_feat)
        return y