You need to sign in or sign up before continuing.
io.py 37.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
15
import multiprocessing
Y
yuyang18 已提交
16
import threading
D
dzhwinter 已提交
17

Y
yuyang18 已提交
18
from ..data_feeder import DataFeeder
T
WIP  
typhoonzero 已提交
19
from control_flow import BlockGuard
Y
yuyang18 已提交
20 21
from layer_function_generator import templatedoc
from .. import core
Y
Refine  
Yu Yang 已提交
22
from ..executor import global_scope
Y
yuyang18 已提交
23
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
Y
yuyang18 已提交
24
    default_startup_program, program_guard, Program
Y
yuyang18 已提交
25 26
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
27

Y
Yu Yang 已提交
28
__all__ = [
X
Xin Pan 已提交
29
    'data', 'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
S
sneaxiy 已提交
30 31
    'double_buffer', 'random_data_generator', 'py_reader', 'Preprocessor',
    'load'
Y
Yu Yang 已提交
32
]
Y
Yu Yang 已提交
33 34 35 36 37 38 39 40 41 42


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
43
    **Data Layer**
Y
Yu Yang 已提交
44

K
kavyasrinet 已提交
45
    This function takes in the input and based on whether data has
C
caoying03 已提交
46
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
47
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
48
    following operators in the graph.
Y
Yu Yang 已提交
49 50 51 52

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
82
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
83 84 85 86 87
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
88 89
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
90
    return data_var
T
typhoonzero 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
116
    **ListenAndServ Layer**
T
typhoonzero 已提交
117

Y
yi.wu 已提交
118 119 120 121 122 123 124 125 126
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
127

Y
yi.wu 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
143 144
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
145 146
    """

Y
Yancey1989 已提交
147
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
148
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
149
        self.inputs = inputs
T
typhoonzero 已提交
150 151 152
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
153 154
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
155
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
169 170 171 172 173 174 175 176
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
177 178
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
179 180 181

        return params, grads

T
typhoonzero 已提交
182 183 184 185 186 187 188
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
189 190 191 192 193 194
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
195
            type='listen_and_serv',
Y
Yancey1989 已提交
196
            inputs={"X": self.inputs},
T
typhoonzero 已提交
197 198 199 200
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
201 202 203
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
204
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
205
                'grad_to_block_id': [""]
T
typhoonzero 已提交
206 207 208
            })


Y
yi.wu 已提交
209
def Send(endpoints, send_vars, sync=True):
T
typhoonzero 已提交
210
    """
Y
yi.wu 已提交
211 212
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
213 214

    Args:
Y
yi.wu 已提交
215
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
216
                   of send_vars to send
Y
yi.wu 已提交
217 218
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
219 220 221 222 223

    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
224
    endpoints = list(set(epmap))
T
typhoonzero 已提交
225 226

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
227
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
228

T
typhoonzero 已提交
229 230 231
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
232 233 234 235 236
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
237 238
    if sync:
        helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
239 240


Y
yi.wu 已提交
241
def Recv(endpoints, get_vars, sync=True):
242
    """
Y
yi.wu 已提交
243
    Receive variables from server side
244 245

    Args:
Y
yi.wu 已提交
246
        endpoints (str): comma seperated IP:PORT pairs in the order
247
                   of send_vars to send
Y
yi.wu 已提交
248 249
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
250

Y
yi.wu 已提交
251 252
    Returns:
        list: list of received variables
253 254 255 256 257 258 259 260 261 262 263 264 265
    """
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
266 267 268
    if sync:
        helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
    return get_vars
Y
Yu Yang 已提交
269 270


Y
Refine  
Yu Yang 已提交
271 272 273 274 275 276 277 278 279 280
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
281 282
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
283 284 285
    return reader


Y
Yu Yang 已提交
286 287 288 289 290
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
291 292 293 294
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
311
    new_op = block.append_op(
F
fengjiayi 已提交
312 313 314
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
315
        attrs=op.all_attrs())
F
fengjiayi 已提交
316
    return new_op
Y
Yu Yang 已提交
317 318


Y
yuyang18 已提交
319
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
320 321 322 323 324
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
325
                       for_parallel=True):
F
fengjiayi 已提交
326
    """
Y
yuyang18 已提交
327
    ${comment}
F
fengjiayi 已提交
328 329

    Args:
Y
yuyang18 已提交
330
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
331
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
332
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
333
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
334
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
335 336 337 338
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
339
       ${out_comment}.
F
fengjiayi 已提交
340 341 342

    Examples:

Y
yuyang18 已提交
343 344 345 346 347 348 349 350
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
351
    """
Y
Yu Yang 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
376 377
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
378 379 380 381

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

F
fengjiayi 已提交
382
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
383 384


F
fengjiayi 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

408
        .. code-block:: python
F
fengjiayi 已提交
409

410 411 412 413 414 415 416
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


Y
yuyang18 已提交
452 453 454 455 456 457
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
458
    """
459
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
460

461
    This layer returns a Reader Variable.
462 463
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
464 465 466 467 468 469 470 471
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
472 473

    Args:
474
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
475 476 477 478 479
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
480
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
481 482

    Returns:
483
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
484 485 486

    Examples:

487
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        >>> import paddle.v2
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
        >>>     paddle.v2.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.v2
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
        >>>     paddle.v2.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
564
        >>>     train_reader.start()
565 566 567 568 569 570
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
571
        >>>     test_reader.start()
572 573 574 575 576
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
577 578 579 580 581 582 583 584 585
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

586 587 588
    if lod_levels is None:
        lod_levels = [0] * len(shapes)

Y
yuyang18 已提交
589 590 591
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
Y
yuyang18 已提交
592
        double_buffer_name = unique_name('double_buffer')
Y
yuyang18 已提交
593 594 595
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
Y
yuyang18 已提交
596
        double_buffer_name = "_".join([name, "double_buffer"])
Y
yuyang18 已提交
597

S
sneaxiy 已提交
598 599 600 601
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
Y
yuyang18 已提交
602
    startup_var = startup_blk.create_var(name=reader_name)
S
sneaxiy 已提交
603 604
    startup_blk.append_op(
        type='create_py_reader',
Y
yuyang18 已提交
605
        inputs={'blocking_queue': [queue_name]},
S
sneaxiy 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

Y
yuyang18 已提交
619 620
    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
Y
yuyang18 已提交
621 622 623 624 625
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader
Y
yuyang18 已提交
626 627 628 629 630 631

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
Y
yuyang18 已提交
632
    reader.exited = False
Y
yuyang18 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

Y
yuyang18 已提交
646 647
                if reader.exited:
                    break
Y
yuyang18 已提交
648
                feed_queue.push(array)
Y
yuyang18 已提交
649 650
                if reader.exited:
                    break
Y
yuyang18 已提交
651 652 653
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
F
fengjiayi 已提交
654
        reader.thread.daemon = True
Y
yuyang18 已提交
655 656 657
        reader.thread.start()

    def __set_tensor_provider__(func):
Y
yuyang18 已提交
658
        reader.tensor_provider = func
Y
yuyang18 已提交
659

Y
yuyang18 已提交
660
    def __set_paddle_reader__(paddle_reader):
Y
yuyang18 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674
        with program_guard(Program(), Program()):
            feed_list = []
            counter = 0
            for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                name = str(counter)
                feed_list.append(
                    data(
                        name=name,
                        dtype=dtype,
                        shape=shape,
                        lod_level=lod_level))
                counter += 1

            feeder = DataFeeder(feed_list=feed_list, place=core.CPUPlace())
Y
yuyang18 已提交
675 676
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)
Y
yuyang18 已提交
677 678

        def __tensor_provider__():
Y
yuyang18 已提交
679 680
            for slots in paddle_reader():
                yield [slots[str(idx)] for idx in xrange(counter)]
Y
yuyang18 已提交
681 682 683 684 685 686

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
Y
yuyang18 已提交
687
            reader.exited = True
Y
yuyang18 已提交
688
            reader.thread.join()
Y
yuyang18 已提交
689 690 691 692
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)
Y
yuyang18 已提交
693 694 695 696

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
Y
yuyang18 已提交
697
    reader.start = __start__
Y
yuyang18 已提交
698 699

    return reader
S
sneaxiy 已提交
700 701


702 703 704 705
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
706
               thread_num=None,
F
fengjiayi 已提交
707 708
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
709
               is_test=None):
F
fengjiayi 已提交
710 711 712
    """
    Open files

F
fengjiayi 已提交
713 714 715
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
716 717 718 719 720 721

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
722 723 724
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
725
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
726 727 728 729
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
730 731 732 733 734 735 736

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
737
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
738
                                                     './data2.recordio'],
F
fengjiayi 已提交
739 740
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
741
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
742 743

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
744
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
745
    """
Y
yuyang18 已提交
746 747 748 749 750 751 752 753 754
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
755

F
fengjiayi 已提交
756 757
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
758 759 760 761 762 763 764 765
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
766
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
767
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
768
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
769 770 771 772
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
773 774 775
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
776 777 778
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
779
    startup_blk.append_op(
Y
yuyang18 已提交
780
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
781

F
fengjiayi 已提交
782 783 784 785 786 787 788
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
789

F
fengjiayi 已提交
790 791 792
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
793
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
794 795 796
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
797
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
798 799 800 801 802
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
803 804 805 806
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
807 808


809 810
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
811 812 813 814 815 816 817 818 819 820
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
821
def shuffle(reader, buffer_size):
822 823 824
    """
    Shuffle the reader.
    """
825 826
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
827 828


J
JiayiFeng 已提交
829
def batch(reader, batch_size):
F
fengjiayi 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    """
    This layer is a reader decorator. It takes a reader and adds 
    'batching' decoration on it. When reading with the result 
    decorated reader, output data will be automatically organized 
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
            # 
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
            # Each 5 adjacent instances will be automatically combined together 
            # to become a batch. So what we get('data') is a batch data instead 
            # of an instance.
    """
J
JiayiFeng 已提交
865 866 867 868
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


869
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
893 894 895
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
896 897
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
898 899


F
fengjiayi 已提交
900
def multi_pass(reader, pass_num):
901 902
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
903 904


F
fengjiayi 已提交
905
def read_file(reader):
F
fengjiayi 已提交
906
    """
F
fengjiayi 已提交
907
    Execute the given reader and get data via it.
F
fengjiayi 已提交
908

F
fengjiayi 已提交
909
    A reader is also a Variable. It can be a raw reader generated by 
F
fengjiayi 已提交
910 911 912 913 914
    `fluid.layers.open_files()` or a decorated one generated by 
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
915
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
916 917

    Returns:
F
fengjiayi 已提交
918
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
932 933 934 935
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
936
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
937 938
    ]
    helper.append_op(
F
fengjiayi 已提交
939
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
940 941 942 943
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
944 945 946


class Preprocessor(object):
X
Xin Pan 已提交
947 948 949 950 951 952 953 954 955
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
956

X
Xin Pan 已提交
957 958 959 960 961 962 963 964 965 966
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
983
    def _is_completed(self):
F
fengjiayi 已提交
984 985 986 987 988 989 990 991 992
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
993
        if not self._is_completed():
F
fengjiayi 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1009 1010 1011 1012
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
1013
        source_vars = []
F
fengjiayi 已提交
1014 1015 1016
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1017
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1018
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)