multi_devices_graph_pass.cc 33.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
40 41 42 43 44
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

M
minqiyang 已提交
45 46 47 48 49 50
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
108
    var = *var_holder.rbegin();
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
136

X
Xin Pan 已提交
137 138 139 140 141 142
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";

X
Xin Pan 已提交
143
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
144 145 146
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
147 148 149 150
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
151
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
152
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
153
#endif
X
Xin Pan 已提交
154

X
Xin Pan 已提交
155
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
156 157
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
158
  balance_vars_.resize(places_.size(), 0);
M
minqiyang 已提交
159

Y
yuyang18 已提交
160 161 162 163 164
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
165 166
}

X
Xin Pan 已提交
167
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
168
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
169
  Init();
X
Xin Pan 已提交
170
  // Give the topology sort order and rebuild the graph structure.
M
minqiyang 已提交
171 172 173 174 175 176
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(*graph);

  if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
    sorted_ops = SortForReduceMode(sorted_ops);
  }

X
Xin Pan 已提交
177 178
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
179 180

  for (auto &node : nodes) {
X
Xin Pan 已提交
181
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
182
      all_vars_.emplace(node->Name(), node->Var());
183
    }
C
fix ci  
chengduoZH 已提交
184
  }
Y
Yu Yang 已提交
185 186

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
187 188 189
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
190

C
chengduoZH 已提交
191 192 193
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
194
  bool is_forwarding = true;
Y
Yancey1989 已提交
195
  bool is_dist_train = false;
196

X
Xin Pan 已提交
197 198
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
199
  for (ir::Node *node : sorted_ops) {
M
minqiyang 已提交
200
    if (OpHaveRole(*node, OpRole::kRPC)) {
X
Xin Pan 已提交
201
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
202 203 204 205 206 207 208 209 210 211 212 213
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
M
minqiyang 已提交
214
    } else if (OpHaveRole(*node, OpRole::kDist)) {
X
Xin Pan 已提交
215
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
216 217 218 219
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
220
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
221
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
222 223
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
224
        // TODO(paddle-dev): Why is there no input for this op_handle?
225
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
226
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
Y
Yu Yang 已提交
227
      }
228 229 230 231
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
232
      is_forwarding = false;
Y
Yu Yang 已提交
233
    } else {
M
minqiyang 已提交
234
      int op_dev_id = GetOpDeviceID(node, sharded_var_device);
C
chengduo 已提交
235
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
236
        CreateComputationalOp(&result, node, op_dev_id);
237
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
238
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
239
        }
C
chengduo 已提交
240 241 242
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
243
        // TODO(paddle-dev): Why is so special about "read" op?
244 245
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
246
          CreateComputationalOps(&result, node, places_.size());
247
          const auto &data_var_names = node->Op()->Output("Out");
248
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
249
        } else {
X
Xin Pan 已提交
250
          CreateComputationalOps(&result, node, places_.size());
251 252
        }

C
chengduo 已提交
253
        if (!is_forwarding && places_.size() > 1) {
M
minqiyang 已提交
254 255 256 257 258
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
C
chengduo 已提交
259 260
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
M
minqiyang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
          try {
            auto backward_vars = boost::get<std::vector<std::string>>(
                node->Op()->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

            for (size_t i = 0; i < backward_vars.size(); i += 2) {
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
              size_t cur_device_id = -1;
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  cur_device_id = GetAppropriateDeviceID({g_name});
                  CreateReduceOp(&result, g_name, cur_device_id);
                  sharded_var_device.emplace(g_name, cur_device_id);
                  if (!is_dist_train) {
                    bcast_var_name_set[cur_device_id].emplace(p_name);
                  }
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertAllReduceOp(&result, g_name);
                  }
                  break;
                default:
                  LOG(FATAL) << "Unknown reduce strategy ";
                  break;
Y
yuyang18 已提交
293
              }
C
chengduoZH 已提交
294
            }
M
minqiyang 已提交
295
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
296 297 298 299 300
          }
        }
      }
    }
  }
301
  bool use_gpu = false;
P
peizhilin 已提交
302
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
303 304 305
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
306 307 308 309 310
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
311 312 313
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
314 315 316 317 318 319 320 321
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
322
      }
C
chengduoZH 已提交
323 324
    }
  }
Y
Yu Yang 已提交
325
  /*
X
Xin Pan 已提交
326 327 328
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
329
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
330

Y
Yu Yang 已提交
331 332 333 334
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
335
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
336
  return graph;
Y
Yu Yang 已提交
337 338
}

M
minqiyang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
std::vector<ir::Node *> MultiDevSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::unordered_map<std::string, int> sharded_var_device;
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
    }
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, sharded_var_device, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
    }
C
fix ci  
chengduoZH 已提交
391
  }
M
minqiyang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
  return sorted_ops;
}

void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
                                                size_t place_id) const {
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
441 442
}

443 444
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
445
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
446 447 448 449 450 451 452 453 454 455
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
456
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
457
                                                const std::string &p_name,
C
chengduoZH 已提交
458
                                                size_t src_dev_id) const {
P
peizhilin 已提交
459
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
460 461 462
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
463
#else
X
polish  
Xin Pan 已提交
464 465 466
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
467
#endif
X
Xin Pan 已提交
468
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
469

X
Xin Pan 已提交
470
  auto *in =
X
clean1  
Xin Pan 已提交
471
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
472 473 474 475
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
476
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
477
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
478 479 480
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
481 482 483 484 485
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

486 487 488
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
489
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
508
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
524
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
525
                                                    ir::Node *node,
C
chengduoZH 已提交
526
                                                    int dev_id) const {
X
Xin Pan 已提交
527
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
528
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
529 530
                              local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
531 532
}

X
Xin Pan 已提交
533
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
534
                                                const std::string &og) const {
P
peizhilin 已提交
535
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
536
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
537 538
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
539
#else
X
Xin Pan 已提交
540
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
541 542
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
543
#endif
X
clean1  
Xin Pan 已提交
544
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
545 546 547

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
548
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
549
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
550 551
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
552
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
553

X
Xin Pan 已提交
554
    auto var =
X
polish  
Xin Pan 已提交
555 556
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
557 558 559 560 561
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

562
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
563
    ir::Graph *result, const std::vector<std::string> &datas) const {
P
peizhilin 已提交
564
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
565
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
566 567
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
568
#else
X
Xin Pan 已提交
569
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
570 571
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
572
#endif
X
clean1  
Xin Pan 已提交
573
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
574 575 576 577
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
578
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
579
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
580
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
581 582 583
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
584 585 586 587 588 589
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
590
int MultiDevSSAGraphBuilder::GetOpDeviceID(
M
minqiyang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }

  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1], sharded_var_device);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

int MultiDevSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
X
Xin Pan 已提交
617
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
618
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
619 620
    return -1;
  }
M
minqiyang 已提交
621 622

  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
623
    return -1;
C
chengduoZH 已提交
624
  }
625
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
626
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
627 628

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
M
minqiyang 已提交
629
  int dev_id = GetVarDeviceID(param_grad[1], sharded_var_device);
X
Xin Pan 已提交
630 631
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
632
  return dev_id;
633 634
}

X
Xin Pan 已提交
635
int MultiDevSSAGraphBuilder::GetVarDeviceID(
M
minqiyang 已提交
636
    const std::string &varname,
X
Xin Pan 已提交
637
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
638
  auto got = sharded_var_device.find(varname);
C
chengduo 已提交
639 640 641 642 643 644
  if (got == sharded_var_device.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device.find(varname.substr(0, pos));
    }
  }
X
Xin Pan 已提交
645
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
646 647
}

648
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
649 650
    ir::Graph *result, const std::string &loss_grad_name,
    ir::Node *out_var_node) const {
Y
Yu Yang 已提交
651
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
652 653
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
654
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
655
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
656
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
657
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
658 659 660 661 662 663 664

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

665 666
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
667 668 669
  }
}

X
Xin Pan 已提交
670
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
671
                                                     ir::Node *node,
T
typhoonzero 已提交
672 673
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
674 675
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
676
    result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
677
        new ComputationOpHandle(result->CreateOpNode(node->Op()), s, p));
678
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
679 680 681
  }
}

X
Xin Pan 已提交
682
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
683 684
                                                   const std::string &og,
                                                   int dst_dev_id) const {
P
peizhilin 已提交
685
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
686
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
687 688
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
689
#else
X
Xin Pan 已提交
690
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
691 692
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
693
#endif
X
clean1  
Xin Pan 已提交
694
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
695 696 697

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
698
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
699
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
700 701
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
702
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
703
  }
X
Xin Pan 已提交
704
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
705 706 707
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
708 709 710 711 712
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
713 714 715
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
716
  int op_dev_id = -1;
717 718 719
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
720
    input_var_names.push_back(input->Name());
721 722
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
723
    output_var_names.push_back(output->Name());
724 725 726
  }

  if (node->Op()->Type() == "split_byref" ||
727 728
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
729
    // TODO(paddle-dev): getting the first var is not safe.
M
minqiyang 已提交
730
    op_dev_id = GetVarDeviceID(input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
731
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
732 733
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
734
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
735 736
      }
    }
737
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
738
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
739
    }
740
  } else if (node->Op()->Type() == "concat") {
M
minqiyang 已提交
741
    op_dev_id = GetVarDeviceID(input_var_names[0], *sharded_var_device);
742
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
743
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
744
    }
Y
Yancey1989 已提交
745
  } else {
746
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
747
    PADDLE_THROW(
Y
Yancey1989 已提交
748 749 750 751 752
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
753 754
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
755

756
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
757
  return op_dev_id;
W
Wu Yi 已提交
758 759 760
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
761
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
762 763 764 765 766 767
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
768
        var = *var_holder.rbegin();
W
Wu Yi 已提交
769 770 771
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
772 773 774
  }
}

775
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
776 777 778
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
779
  int op_dev_id = -1;
780
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
781
    // TODO(paddle-dev): getting the first var is not safe.
M
minqiyang 已提交
782
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
783 784
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
785 786 787
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
788
        node->inputs[0]->Name().find(".block") == std::string::npos) {
789 790
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
791
        input_var_names.push_back(n->Name());
792
      }
W
Wu Yi 已提交
793 794 795 796
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
797 798
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
799
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
800
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
801
      }
X
Xin Pan 已提交
802
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
803
    }
804 805 806
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
807
      output_var_names.push_back(n->Name());
808
    }
W
Wu Yi 已提交
809 810 811
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
M
minqiyang 已提交
812
      op_dev_id = GetVarDeviceID(recv_param_grad[1], *sharded_var_device);
M
minqiyang 已提交
813 814 815
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
816 817 818
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
819
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
820
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
821 822
    }
  } else {
W
Wu Yi 已提交
823
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
824 825 826 827
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
828
                 node->Op()->Type());
X
Xin Pan 已提交
829
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
830 831
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
832

W
Wu Yi 已提交
833 834
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
835
  } else {
W
Wu Yi 已提交
836 837 838
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
839
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
840 841
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
842

W
Wu Yi 已提交
843 844 845 846
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
M
minqiyang 已提交
847
        outvar_dev_id = GetVarDeviceID(output->Name(), *sharded_var_device);
848
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
849 850 851 852 853 854 855 856 857 858 859 860
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
861
  return op_dev_id;
Y
Yu Yang 已提交
862 863
}

M
minqiyang 已提交
864 865 866 867 868 869 870 871
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
}

872
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
873
  return boost::get<int>(
874
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
875 876 877
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
878
}
Y
Yu Yang 已提交
879 880 881
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
882

X
Xin Pan 已提交
883
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
884 885 886 887 888 889
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
    .RequirePassAttr(paddle::framework::details::kStrategy);