bbox_head.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Xavier
from paddle.fluid.regularizer import L2Decay
Y
Yuan Gao 已提交
25
from paddle.fluid.initializer import MSRA
26 27

from ppdet.modeling.ops import MultiClassNMS
Y
Yuan Gao 已提交
28
from ppdet.modeling.ops import ConvNorm
29 30
from ppdet.core.workspace import register, serializable

Y
Yuan Gao 已提交
31
__all__ = ['BBoxHead', 'TwoFCHead', 'XConvNormHead']
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


@register
@serializable
class BoxCoder(object):
    __op__ = fluid.layers.box_coder
    __append_doc__ = True

    def __init__(self,
                 prior_box_var=[0.1, 0.1, 0.2, 0.2],
                 code_type='decode_center_size',
                 box_normalized=False,
                 axis=1):
        super(BoxCoder, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
        self.axis = axis


Y
Yuan Gao 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
@register
class XConvNormHead(object):
    """
    RCNN head with serveral convolution layers

    Args:
        conv_num (int): num of convolution layers for the rcnn head
        conv_dim (int): num of filters for the conv layers
        mlp_dim (int): num of filters for the fc layers
    """
    __shared__ = ['norm_type', 'freeze_norm']

    def __init__(self,
                 num_conv=4,
                 conv_dim=256,
                 mlp_dim=1024,
                 norm_type=None,
                 freeze_norm=False):
        super(XConvNormHead, self).__init__()
        self.conv_dim = conv_dim
        self.mlp_dim = mlp_dim
        self.num_conv = num_conv
        self.norm_type = norm_type
        self.freeze_norm = freeze_norm

    def __call__(self, roi_feat):
        conv = roi_feat
        fan = self.conv_dim * 3 * 3
        initializer = MSRA(uniform=False, fan_in=fan)
        for i in range(self.num_conv):
            name = 'bbox_head_conv' + str(i)
            conv = ConvNorm(
                conv,
                self.conv_dim,
                3,
                act='relu',
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=name,
                norm_name=name)
        fan = conv.shape[1] * conv.shape[2] * conv.shape[3]
        head_heat = fluid.layers.fc(input=conv,
                                    size=self.mlp_dim,
                                    act='relu',
                                    name='fc6' + name,
                                    param_attr=ParamAttr(
                                        name='fc6%s_w' % name,
                                        initializer=Xavier(fan_out=fan)),
                                    bias_attr=ParamAttr(
                                        name='fc6%s_b' % name,
                                        learning_rate=2,
                                        regularizer=L2Decay(0.)))
        return head_heat


108 109 110 111 112 113
@register
class TwoFCHead(object):
    """
    RCNN head with two Fully Connected layers

    Args:
Y
Yuan Gao 已提交
114
        mlp_dim (int): num of filters for the fc layers
115 116
    """

Y
Yuan Gao 已提交
117
    def __init__(self, mlp_dim=1024):
118
        super(TwoFCHead, self).__init__()
Y
Yuan Gao 已提交
119
        self.mlp_dim = mlp_dim
120 121 122 123

    def __call__(self, roi_feat):
        fan = roi_feat.shape[1] * roi_feat.shape[2] * roi_feat.shape[3]
        fc6 = fluid.layers.fc(input=roi_feat,
Y
Yuan Gao 已提交
124
                              size=self.mlp_dim,
125 126 127 128 129 130 131 132 133 134
                              act='relu',
                              name='fc6',
                              param_attr=ParamAttr(
                                  name='fc6_w',
                                  initializer=Xavier(fan_out=fan)),
                              bias_attr=ParamAttr(
                                  name='fc6_b',
                                  learning_rate=2.,
                                  regularizer=L2Decay(0.)))
        head_feat = fluid.layers.fc(input=fc6,
Y
Yuan Gao 已提交
135
                                    size=self.mlp_dim,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
                                    act='relu',
                                    name='fc7',
                                    param_attr=ParamAttr(
                                        name='fc7_w', initializer=Xavier()),
                                    bias_attr=ParamAttr(
                                        name='fc7_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        return head_feat


@register
class BBoxHead(object):
    """
    RCNN bbox head

    Args:
153
        head (object): the head module instance, e.g., `ResNetC5`, `TwoFCHead`
154 155 156 157 158
        box_coder (object): `BoxCoder` instance
        nms (object): `MultiClassNMS` instance
        num_classes: number of output classes
    """
    __inject__ = ['head', 'box_coder', 'nms']
159
    __shared__ = ['num_classes']
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    def __init__(self,
                 head,
                 box_coder=BoxCoder().__dict__,
                 nms=MultiClassNMS().__dict__,
                 num_classes=81):
        super(BBoxHead, self).__init__()
        self.head = head
        self.num_classes = num_classes
        self.box_coder = box_coder
        self.nms = nms
        if isinstance(box_coder, dict):
            self.box_coder = BoxCoder(**box_coder)
        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)
        self.head_feat = None

    def get_head_feat(self, input=None):
        """
        Get the bbox head feature map.
        """

        if input is not None:
            feat = self.head(input)
            if isinstance(feat, OrderedDict):
                feat = list(feat.values())[0]
            self.head_feat = feat
        return self.head_feat

    def _get_output(self, roi_feat):
        """
        Get bbox head output.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.

        Returns:
            cls_score(Variable): Output of rpn head with shape of
                [N, num_anchors, H, W].
            bbox_pred(Variable): Output of rpn head with shape of
                [N, num_anchors * 4, H, W].
        """
        head_feat = self.get_head_feat(roi_feat)
        # when ResNetC5 output a single feature map
Y
Yuan Gao 已提交
204 205
        if not isinstance(self.head, TwoFCHead) and not isinstance(
                self.head, XConvNormHead):
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            head_feat = fluid.layers.pool2d(
                head_feat, pool_type='avg', global_pooling=True)
        cls_score = fluid.layers.fc(input=head_feat,
                                    size=self.num_classes,
                                    act=None,
                                    name='cls_score',
                                    param_attr=ParamAttr(
                                        name='cls_score_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.01)),
                                    bias_attr=ParamAttr(
                                        name='cls_score_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        bbox_pred = fluid.layers.fc(input=head_feat,
                                    size=4 * self.num_classes,
                                    act=None,
                                    name='bbox_pred',
                                    param_attr=ParamAttr(
                                        name='bbox_pred_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.001)),
                                    bias_attr=ParamAttr(
                                        name='bbox_pred_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        return cls_score, bbox_pred

    def get_loss(self, roi_feat, labels_int32, bbox_targets,
                 bbox_inside_weights, bbox_outside_weights):
        """
        Get bbox_head loss.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            labels_int32(Variable): Class label of a RoI with shape [P, 1].
                P is the number of RoI.
            bbox_targets(Variable): Box label of a RoI with shape
                [P, 4 * class_nums].
            bbox_inside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.
            bbox_outside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.

        Return:
            Type: Dict
                loss_cls(Variable): bbox_head loss.
                loss_bbox(Variable): bbox_head loss.
        """

        cls_score, bbox_pred = self._get_output(roi_feat)

        labels_int64 = fluid.layers.cast(x=labels_int32, dtype='int64')
        labels_int64.stop_gradient = True
        loss_cls = fluid.layers.softmax_with_cross_entropy(
            logits=cls_score, label=labels_int64, numeric_stable_mode=True)
        loss_cls = fluid.layers.reduce_mean(loss_cls)
        loss_bbox = fluid.layers.smooth_l1(
            x=bbox_pred,
            y=bbox_targets,
            inside_weight=bbox_inside_weights,
            outside_weight=bbox_outside_weights,
            sigma=1.0)
        loss_bbox = fluid.layers.reduce_mean(loss_bbox)
        return {'loss_cls': loss_cls, 'loss_bbox': loss_bbox}

    def get_prediction(self, roi_feat, rois, im_info, im_shape):
        """
        Get prediction bounding box in test stage.

        Args:
W
wangguanzhong 已提交
277
            roi_feat (Variable): RoI feature from RoIExtractor.
278 279 280 281
            rois (Variable): Output of generate_proposals in rpn head.
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.
W
wangguanzhong 已提交
282 283 284
            im_shape (Variable): Actual shape of original image with shape
                [B, 3]. B is the number of images, each element consists of 
                original_height, original_width, 1
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
                row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
                N is the total number of prediction.
        """
        cls_score, bbox_pred = self._get_output(roi_feat)

        im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        im_scale = fluid.layers.sequence_expand(im_scale, rois)
        boxes = rois / im_scale
        cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
        bbox_pred = fluid.layers.reshape(bbox_pred, (-1, self.num_classes, 4))
        decoded_box = self.box_coder(prior_box=boxes, target_box=bbox_pred)
        cliped_box = fluid.layers.box_clip(input=decoded_box, im_info=im_shape)
        pred_result = self.nms(bboxes=cliped_box, scores=cls_prob)
        return {'bbox': pred_result}