pyramidal_embedding.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from paddle import ParamAttr
from .resnet import *
from ppdet.core.workspace import register

G
George Ni 已提交
27
__all__ = ['PCBPyramid']
28 29 30


@register
G
George Ni 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
class PCBPyramid(nn.Layer):
    """
    PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349,
    Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193

    Args:
        input_ch (int): Number of channels of the input feature.
        num_stripes (int): Number of sub-parts.
        used_levels (tuple): Whether the level is used, 1 means used.
        num_classes (int): Number of classes for identities.
        last_conv_stride (int): Stride of the last conv.
        last_conv_dilation (int): Dilation of the last conv.
        num_conv_out_channels (int): Number of channels of conv feature.
    """

    def __init__(self,
                 input_ch=2048,
                 num_stripes=6,
                 used_levels=(1, 1, 1, 1, 1, 1),
                 num_classes=751,
                 last_conv_stride=1,
                 last_conv_dilation=1,
                 num_conv_out_channels=128):
        super(PCBPyramid, self).__init__()
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        self.num_stripes = num_stripes
        self.used_levels = used_levels
        self.num_classes = num_classes

        self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)]
        self.num_branches = sum(self.num_in_each_level)

        self.base = ResNet101(
            lr_mult=0.1,
            last_conv_stride=last_conv_stride,
            last_conv_dilation=last_conv_dilation)
        self.dropout_layer = nn.Dropout(p=0.2)
        self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch(
            num_conv_out_channels, input_ch)

    def basic_branch(self, num_conv_out_channels, input_ch):
        # the level indexes are defined from fine to coarse,
        # the branch will contain one more part than that of its previous level
        # the sliding step is set to 1
        pyramid_conv_list = nn.LayerList()
        pyramid_fc_list = nn.LayerList()

        idx_levels = 0
        for idx_branches in range(self.num_branches):
            if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
                idx_levels += 1
            if self.used_levels[idx_levels] == 0:
                continue
            pyramid_conv_list.append(
                nn.Sequential(
                    nn.Conv2D(input_ch, num_conv_out_channels, 1),
                    nn.BatchNorm2D(num_conv_out_channels), nn.ReLU()))

        idx_levels = 0
        for idx_branches in range(self.num_branches):
            if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
                idx_levels += 1
            if self.used_levels[idx_levels] == 0:
                continue
            name = "Linear_branch_id_{}".format(idx_branches)
            fc = nn.Linear(
                in_features=num_conv_out_channels,
                out_features=self.num_classes,
                weight_attr=ParamAttr(
                    name=name + "_weights",
                    initializer=Normal(
                        mean=0., std=0.001)),
                bias_attr=ParamAttr(
                    name=name + "_bias", initializer=Constant(value=0.)))
            pyramid_fc_list.append(fc)
        return pyramid_conv_list, pyramid_fc_list

    def pyramid_forward(self, feat):
        each_stripe_size = int(feat.shape[2] / self.num_stripes)

        feat_list, logits_list = [], []
        idx_levels = 0
        used_branches = 0
        for idx_branches in range(self.num_branches):
            if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]):
                idx_levels += 1
            if self.used_levels[idx_levels] == 0:
                continue
            idx_in_each_level = idx_branches - sum(self.num_in_each_level[
                0:idx_levels])
            stripe_size_in_each_level = each_stripe_size * (idx_levels + 1)
            start = idx_in_each_level * each_stripe_size
            end = start + stripe_size_in_each_level

            k = feat.shape[-1]
            local_feat_avgpool = F.avg_pool2d(
                feat[:, :, start:end, :],
                kernel_size=(stripe_size_in_each_level, k))
            local_feat_maxpool = F.max_pool2d(
                feat[:, :, start:end, :],
                kernel_size=(stripe_size_in_each_level, k))
            local_feat = local_feat_avgpool + local_feat_maxpool

            local_feat = self.pyramid_conv_list0[used_branches](local_feat)
            local_feat = paddle.reshape(
                local_feat, shape=[local_feat.shape[0], -1])
            feat_list.append(local_feat)

            local_logits = self.pyramid_fc_list0[used_branches](
                self.dropout_layer(local_feat))
            logits_list.append(local_logits)

            used_branches += 1

        return feat_list, logits_list

    def forward(self, x):
        feat = self.base(x)
        assert feat.shape[2] % self.num_stripes == 0
        feat_list, logits_list = self.pyramid_forward(feat)
        feat_out = paddle.concat(feat_list, axis=-1)
        return feat_out