multi_devices_graph_builder.cc 24.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
25
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
Xin Pan 已提交
28
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
29
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32 33 34
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
35 36

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
37 38 39 40
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
41
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
42
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
43 44 45
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
46
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
47
      strategy_(strategy) {
Y
Yu Yang 已提交
48 49 50 51 52
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
53
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
54 55
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
56
      local_scopes_(local_scopes),
Y
yuyang18 已提交
57
      strategy_(strategy) {
Y
Yu Yang 已提交
58
#endif
Y
Yu Yang 已提交
59 60 61
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
62
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
63 64 65 66 67
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
68 69
}

X
Xin Pan 已提交
70
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, const OpDesc &op,
Y
Yu Yang 已提交
71 72
                                                size_t place_id) const {
  auto p = places_[place_id];
X
Xin Pan 已提交
73
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
X
Xin Pan 已提交
74 75
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
76

Y
Yu Yang 已提交
77 78 79
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
80 81 82
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
83 84
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
85 86
  }
}
Y
fix pe  
Yancey1989 已提交
87 88 89 90

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
91 92
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
93
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
94 95
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
96
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
110 111 112
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
126 127 128
    return false;
  }

Y
Yu Yang 已提交
129 130 131 132
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
133
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
134
    for (auto &var : opvars) {
Y
Yancey1989 已提交
135 136 137
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
138
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
139
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
140
        return true;
T
typhoonzero 已提交
141 142
      }
    }
Y
Yu Yang 已提交
143
    return false;
T
typhoonzero 已提交
144 145
  };

Y
Yancey1989 已提交
146 147
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
148 149
}

Y
Yancey1989 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
Xin Pan 已提交
170
std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Build(
X
Xin Pan 已提交
171 172
    std::unique_ptr<Graph> graph) const {
  const ProgramDesc &program = graph->Program();
C
fix ci  
chengduoZH 已提交
173
  for (auto *var : program.Block(0).AllVars()) {
Y
Yancey1989 已提交
174
    all_vars_.emplace(var->Name(), var);
C
fix ci  
chengduoZH 已提交
175
  }
C
chengduoZH 已提交
176

X
Xin Pan 已提交
177
  Graph &result = *graph;
C
chengduoZH 已提交
178
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
179 180

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
181 182 183
  result.Set("vars", new GraphVars(places_.size()));
  result.Set("dep_vars", new GraphDepVars);
  result.Set("ops", new GraphOps);
Y
fix pe  
Yancey1989 已提交
184 185 186 187
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
188

C
chengduoZH 已提交
189 190 191
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
192
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
193
  bool is_forwarding = true;
194

Y
Yu Yang 已提交
195
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
196 197 198
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
199
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
200
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
201
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
202
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
203
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
204 205
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
206 207
        CreateScaleLossGradOp(&result);
      }
208 209 210 211
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
212
      is_forwarding = false;
Y
Yu Yang 已提交
213
    } else {
214
      int op_dev_id = GetOpDeviceID(*op);
C
chengduo 已提交
215
      if (op_dev_id != -1) {  // This op only runs on one specific device.
C
chengduoZH 已提交
216 217
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
218
          var_name_on_devices_.emplace(var_name, op_dev_id);
C
chengduoZH 已提交
219
        }
C
chengduo 已提交
220 221 222
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
F
fengjiayi 已提交
223
        if (op->Type() == "read" && strategy_.enable_data_balance_) {
F
fengjiayi 已提交
224 225
          op->SetAttr("throw_eof_exp", false);
          CreateComputationalOps(&result, *op, places_.size());
226 227
          const auto &data_var_names = op->Output("Out");
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
228 229
        } else {
          CreateComputationalOps(&result, *op, places_.size());
230 231
        }

C
chengduo 已提交
232 233 234 235 236 237 238 239 240 241
        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
          if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
              auto backward_vars =
                  boost::get<std::vector<std::string>>(op->GetNullableAttr(
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
242

C
chengduo 已提交
243
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
244

C
chengduo 已提交
245 246 247 248
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
249

C
chengduo 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
                    var_name_on_devices_.emplace(g_name, cur_device_id);
                    bcast_var_name_set[cur_device_id].emplace(p_name);
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
269
              }
C
chengduo 已提交
270
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
271
            }
Y
Yu Yang 已提交
272 273 274 275 276 277
          }
        }
      }
    }
  }

278 279 280 281 282 283 284 285 286 287 288 289 290
  bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
  use_gpu = nccl_ctxs_ != nullptr;
#endif

  if (use_gpu ||
      strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
    // Insert BCast Ops
    for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
      auto &to_bcast_set = bcast_var_name_set[dev_id];
      for (auto &bcast_name : to_bcast_set) {
        CreateBroadcastOp(&result, bcast_name, dev_id);
      }
C
chengduoZH 已提交
291 292
    }
  }
293

Y
Yu Yang 已提交
294 295
  /*
    Dependency graph has been constructed. However, there are still data
296
    hazards need to be handled.
Y
Yu Yang 已提交
297 298
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
299

Y
Yu Yang 已提交
300 301 302 303
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
304
  return std::move(graph);
Y
Yu Yang 已提交
305 306
}

Y
Yancey1989 已提交
307 308 309
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
310 311 312
    return true;
  }
  return false;
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
328
void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
C
chengduoZH 已提交
329
                                                const std::string &p_name,
C
chengduoZH 已提交
330
                                                size_t src_dev_id) const {
X
Xin Pan 已提交
331
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
C
chengduoZH 已提交
332
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
333 334
  auto *op_handle = new BroadcastOpHandle(result->nodes.back().get(),
                                          local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
335
#else
X
Xin Pan 已提交
336 337
  auto *op_handle =
      new BroadcastOpHandle(result->nodes.back().get(), local_scopes_, places_);
C
chengduoZH 已提交
338
#endif
X
Xin Pan 已提交
339
  result->Get<GraphOps>("ops").emplace_back(op_handle);
X
Xin Pan 已提交
340

X
Xin Pan 已提交
341 342
  auto *in =
      result->Get<GraphVars>("vars").at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
343 344 345 346
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
347
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
348
    result->nodes.emplace_back(new ir::Node(ir::Node::Type::kVariable));
X
Xin Pan 已提交
349
    auto &vars = result->Get<GraphVars>("vars").at(i).at(p_name);
X
Xin Pan 已提交
350 351
    auto *out_var =
        new VarHandle(result->nodes.back().get(), vars.size(), i, p_name, p);
C
chengduoZH 已提交
352 353 354 355 356
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

X
Xin Pan 已提交
357
void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
C
chengduoZH 已提交
358 359
                                                    const OpDesc &op,
                                                    int dev_id) const {
X
Xin Pan 已提交
360 361 362
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
  result->Get<GraphOps>("ops").emplace_back(new ComputationOpHandle(
      result->nodes.back().get(), op, local_scopes_[dev_id], places_[dev_id]));
C
chengduoZH 已提交
363 364 365
  CreateOpHandleIOs(result, op, dev_id);
}

X
Xin Pan 已提交
366
void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
C
chengduoZH 已提交
367
                                                const std::string &og) const {
X
Xin Pan 已提交
368
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
Y
Yu Yang 已提交
369
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
370 371
  result->Get<GraphOps>("ops").emplace_back(new AllReduceOpHandle(
      result->nodes.back().get(), local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
372
#else
X
Xin Pan 已提交
373 374
  result->Get<GraphOps>("ops").emplace_back(new AllReduceOpHandle(
      result->nodes.back().get(), local_scopes_, places_));
C
chengduoZH 已提交
375
#endif
X
Xin Pan 已提交
376
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
Y
Yu Yang 已提交
377 378 379

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
380
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
381
    auto &vars = result->Get<GraphVars>("vars")[i][og];
Y
Yu Yang 已提交
382 383
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
384 385
    op_handle->AddInput(prev_grad.get());

X
Xin Pan 已提交
386 387
    result->nodes.emplace_back(new ir::Node(ir::Node::Type::kVariable));
    auto var = new VarHandle(result->nodes.back().get(), vars.size(), i, og, p);
Y
Yu Yang 已提交
388 389 390 391 392
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

393
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
394
    Graph *result, const std::vector<std::string> &datas) const {
X
Xin Pan 已提交
395
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
F
fengjiayi 已提交
396
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
397 398
  result->Get<GraphOps>("ops").emplace_back(new DataBalanceOpHandle(
      result->nodes.back().get(), local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
399
#else
X
Xin Pan 已提交
400 401
  result->Get<GraphOps>("ops").emplace_back(new DataBalanceOpHandle(
      result->nodes.back().get(), local_scopes_, places_));
F
fengjiayi 已提交
402
#endif
X
Xin Pan 已提交
403
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
404 405 406 407
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
408
      auto &vars = result->Get<GraphVars>("vars")[i][d_name];
409 410
      PADDLE_ENFORCE(!vars.empty());
      op_handle->AddInput(vars.back().get());
X
Xin Pan 已提交
411 412 413
      result->nodes.emplace_back(new ir::Node(ir::Node::Type::kVariable));
      auto var =
          new VarHandle(result->nodes.back().get(), vars.size(), i, d_name, p);
414 415 416 417 418 419
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

Y
Yu Yang 已提交
420 421 422 423 424 425 426 427 428 429 430 431
bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

432
int MultiDevSSAGraphBuilder::GetOpDeviceID(const OpDesc &op) const {
Y
yuyang18 已提交
433
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
434 435
    return -1;
  }
436 437 438 439
  int op_role = boost::get<int>(
      op.GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
440
  }
441 442 443 444 445 446 447 448
  auto param_grad = boost::get<std::vector<std::string>>(
      op.GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s]", op.Type(),
                    param_grad[0]);
  return dev_id;
449 450 451 452 453
}

int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
  auto got = var_name_on_devices_.find(varname);
  return got == var_name_on_devices_.end() ? -1 : got->second;
C
chengduoZH 已提交
454 455
}

X
Xin Pan 已提交
456
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
Y
Yu Yang 已提交
457 458 459
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
460 461 462
    auto *communication_dev_ctx =
        nccl_ctxs_ ? nccl_ctxs_->DevCtx(places_[i])
                   : platform::DeviceContextPool::Instance().Get(places_[i]);
Y
Yu Yang 已提交
463 464 465 466
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif
X
Xin Pan 已提交
467 468 469 470
    result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
    auto *op_handle = new ScaleLossGradOpHandle(
        result->nodes.back().get(), local_scopes_.size(), local_scopes_[i],
        places_[i], communication_dev_ctx);
X
Xin Pan 已提交
471
    result->Get<GraphOps>("ops").emplace_back(op_handle);
Y
Yu Yang 已提交
472 473 474 475 476 477 478 479 480 481 482 483

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

X
Xin Pan 已提交
484
void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
T
typhoonzero 已提交
485 486 487
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
488 489
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
490
    result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
X
Xin Pan 已提交
491
    result->Get<GraphOps>("ops").emplace_back(
X
Xin Pan 已提交
492
        new ComputationOpHandle(result->nodes.back().get(), op, s, p));
Y
Yu Yang 已提交
493
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
494 495 496
  }
}

X
Xin Pan 已提交
497
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
C
chengduoZH 已提交
498 499
                                                   const std::string &og,
                                                   int dst_dev_id) const {
X
Xin Pan 已提交
500
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
C
chengduoZH 已提交
501
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
502 503
  result->Get<GraphOps>("ops").emplace_back(new ReduceOpHandle(
      result->nodes.back().get(), local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
504
#else
X
Xin Pan 已提交
505
  result->Get<GraphOps>("ops").emplace_back(
X
Xin Pan 已提交
506
      new ReduceOpHandle(result->nodes.back().get(), local_scopes_, places_));
C
chengduoZH 已提交
507
#endif
X
Xin Pan 已提交
508
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
C
chengduoZH 已提交
509 510 511

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
512
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
513
    auto &vars = result->Get<GraphVars>("vars")[i][og];
C
chengduoZH 已提交
514 515 516 517
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
X
Xin Pan 已提交
518
  auto &vars = result->Get<GraphVars>("vars")[dst_dev_id][og];
X
Xin Pan 已提交
519 520 521
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kVariable));
  auto var = new VarHandle(result->nodes.back().get(), vars.size(), dst_dev_id,
                           og, places_[dst_dev_id]);
C
chengduoZH 已提交
522 523 524 525 526
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

527 528
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
X
Xin Pan 已提交
529
void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
Y
fix pe  
Yancey1989 已提交
530
                                        const std::string &prev_op_name) const {
X
Xin Pan 已提交
531
  for (auto &prev_op : result->Get<GraphOps>("ops")) {
Y
fix pe  
Yancey1989 已提交
532
    if (prev_op->Name() == prev_op_name) {
X
Xin Pan 已提交
533 534
      result->nodes.emplace_back(new ir::Node(ir::Node::Type::kVariable));
      auto *dep_var = new DummyVarHandle(result->nodes.back().get());
Y
Yancey1989 已提交
535
      prev_op->AddOutput(dep_var);
X
Xin Pan 已提交
536
      result->Get<GraphDepVars>("dep_vars").emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
537
      op->AddInput(dep_var);
Y
Yancey1989 已提交
538 539 540 541
    }
  }
}

X
Xin Pan 已提交
542
void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
Y
Yancey1989 已提交
543 544
                                                const OpDesc &op) const {
  int op_dev_id = -1;
Y
yi.wu 已提交
545
  if (op.Type() == "split_byref" || op.Type() == "split_selected_rows") {
Y
Yancey1989 已提交
546 547 548 549 550 551 552 553 554 555 556 557
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else if (op.Type() == "concat") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
Y
yi.wu 已提交
558 559 560
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
Y
Yancey1989 已提交
561 562 563 564 565 566 567 568 569 570
  } else {
    PADDLE_ENFORCE(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s", op.Type());

  CreateComputationalOp(result, op, op_dev_id);
Y
Yancey1989 已提交
571
  if (op.Type() == "concat") {
X
Xin Pan 已提交
572
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(),
X
Xin Pan 已提交
573
              "fetch_barrier");
Y
Yancey1989 已提交
574 575 576
  }
}

577
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
578
void MultiDevSSAGraphBuilder::CreateRPCOp(Graph *result,
Y
Yancey1989 已提交
579 580 581 582 583 584
                                          const OpDesc &op) const {
  int op_dev_id = -1;
  if (op.Type() == "send") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    // the variable name which contains .block means it was splited by
    // split_byref op
585 586
    // so that we can balance the variable blocks to all the pserver
    // instances.
Y
Yancey1989 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
        op.InputArgumentNames()[0].find(".block") == std::string::npos) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
  } else if (op.Type() == "recv") {
    op_dev_id = GetAppropriateDeviceID(op.OutputArgumentNames());
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else {
    // send_barrier and fetch_barrier op can be scheduled on device 0
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
                 op.Type());

X
Xin Pan 已提交
607 608 609 610
  result->nodes.emplace_back(new ir::Node(ir::Node::Type::kOperation));
  result->Get<GraphOps>("ops").emplace_back(
      new RPCOpHandle(result->nodes.back().get(), op, local_scopes_[op_dev_id],
                      op.Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
611

Y
Yancey1989 已提交
612
  if (op.Type() == "send_barrier") {
X
Xin Pan 已提交
613
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(), "send");
Y
Yancey1989 已提交
614
  } else if (op.Type() == "recv") {
X
Xin Pan 已提交
615
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(),
X
Xin Pan 已提交
616
              "send_barrier");
Y
Yancey1989 已提交
617
  } else if (op.Type() == "fetch_barrier") {
X
Xin Pan 已提交
618
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(), "recv");
619
  } else if (op.Type() == "send") {
Y
Yancey1989 已提交
620 621 622
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
623
        "rpc op should be in ["
624
        "send, send_barrier. recv, fetch_barrier]");
Y
Yancey1989 已提交
625 626
  }

Y
Yancey1989 已提交
627
  CreateOpHandleIOs(result, op, op_dev_id);
Y
Yu Yang 已提交
628 629 630
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
631 632
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
633 634 635
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
636
}
Y
Yu Yang 已提交
637 638 639
}  // namespace details
}  // namespace framework
}  // namespace paddle