activation_mkldnn_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
17
#include "paddle/fluid/operators/mkldnn_activation_op.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

namespace {
template <typename T, typename ExecContext>
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
                     const T alpha = 0, const T beta = 0) {
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");

  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
  const auto *src = ctx.template Input<Tensor>("X");
  const auto *src_data = src->template data<T>();

  auto *dst = ctx.template Output<Tensor>("Out");
  const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
43 44
  PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
                 "Input dim must be with 2 or 4");
45 46 47
  std::vector<int> src_tz = framework::vectorize2int(src->dims());

  // create memory description
48
  auto data_md = src_tz.size() == 2
K
Krzysztof Binias 已提交
49 50 51 52
                     ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nc)
                     : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nchw);
53 54

  // create memory primitives
K
Krzysztof Binias 已提交
55 56 57 58 59 60
  auto src_memory =
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(src_data)));
  auto dst_memory =
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(dst_data)));
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

  auto forward_desc = mkldnn::eltwise_forward::desc(
      mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);

  // save prim desc into global device context to be referred in backward path
  const std::string key = ctx.op().Output("Out");
  const std::string key_eltwise_pd = key + "@eltwise_pd";
  auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
      forward_desc, mkldnn_engine);
  dev_ctx.SetBlob(key_eltwise_pd, forward_pd);

  auto eltwise = mkldnn::eltwise_forward(*forward_pd, src_memory, dst_memory);

  // push primitive to stream and wait until it's executed
  std::vector<mkldnn::primitive> pipeline = {eltwise};
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

template <typename T, typename ExecContext>
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
                  const T alpha = 0, const T beta = 0) {
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
  const auto *x = ctx.template Input<Tensor>("X");
  const auto *src = x->template data<T>();

  auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
  const auto *diff_dst = dout->template data<T>();

  auto *dx =
      ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
  const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
  std::vector<int> src_tz = framework::vectorize2int(x->dims());

  // create memory description
100
  auto data_md = src_tz.size() == 2
K
Krzysztof Binias 已提交
101 102 103 104
                     ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nc)
                     : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nchw);
105 106

  // create memory primitives
K
Krzysztof Binias 已提交
107 108
  auto src_memory = mkldnn::memory(
      {data_md, mkldnn_engine}, static_cast<void *>(const_cast<float *>(src)));
109
  auto diff_src_memory =
K
Krzysztof Binias 已提交
110 111
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(diff_src)));
112
  auto diff_dst_memory =
K
Krzysztof Binias 已提交
113 114
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(diff_dst)));
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  auto backward_desc =
      mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);

  // retrieve eltwise primitive desc from device context
  const std::string key = ctx.op().Input("Out");
  const std::string key_eltwise_pd = key + "@eltwise_pd";
  const std::shared_ptr<void> forward_pd = dev_ctx.GetBlob(key_eltwise_pd);
  PADDLE_ENFORCE(forward_pd != nullptr,
                 "Fail to find eltwise_pd in device context");
  auto *p_forward_pd =
      static_cast<mkldnn::eltwise_forward::primitive_desc *>(forward_pd.get());

  auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
      backward_desc, mkldnn_engine, *p_forward_pd);

  auto eltwise_bwd = mkldnn::eltwise_backward(eltwise_bwd_prim_desc, src_memory,
                                              diff_dst_memory, diff_src_memory);

  // push primitive to stream and wait until it's executed
  std::vector<mkldnn::primitive> pipeline = {eltwise_bwd};
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}  // anonymous namespace

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
using ReluMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
using ReluMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
199 200 201 202 203
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
  __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \
  __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \
  __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \
  __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
204 205

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);