You need to sign in or sign up before continuing.
test_interpolate_op.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core


def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None):
    """nearest neighbor interpolation implement in shape [N, C, H, W]"""
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    n, c, in_h, in_w = X.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
        ratio_h = (in_h - 1.0) / (out_h - 1.0)
    if out_w > 1:
        ratio_w = (in_w - 1.0) / (out_w - 1.0)

    out = np.zeros((n, c, out_h, out_w))
    for i in range(out_h):
        in_i = int(ratio_h * i + 0.5)
        for j in range(out_w):
            in_j = int(ratio_w * j + 0.5)
            out[:, :, i, j] = X[:, :, in_i, in_j]

    return out.astype(X.dtype)


def bilinear_interp_np(input, out_h, out_w, out_size):
    """bilinear interpolation implement in shape [N, C, H, W]"""
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    batch_size, channel, in_h, in_w = input.shape
    if out_h > 1:
        ratio_h = (in_h - 1.0) / (out_h - 1.0)
    else:
        ratio_h = 0.0
    if out_w > 1:
        ratio_w = (in_w - 1.0) / (out_w - 1.0)
    else:
        ratio_w = 0.0

    out = np.zeros((batch_size, channel, out_h, out_w))
    for i in range(out_h):
        h = int(ratio_h * i)
        hid = 1 if h < in_h - 1 else 0
        h1lambda = ratio_h * i - h
        h2lambda = 1.0 - h1lambda
        for j in range(out_w):
            w = int(ratio_w * j)
            wid = 1 if w < in_w - 1 else 0
            w1lambda = ratio_w * j - w
            w2lambda = 1.0 - w1lambda

            out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
                                        w1lambda*input[:, :, h, w+wid]) + \
                h1lambda*(w2lambda*input[:, :, h+hid, w] +
                          w1lambda*input[:, :, h+hid, w+wid])
    return out.astype(input.dtype)


INTERPOLATE_FUNCS = {
    'bilinear': bilinear_interp_np,
    'nearest': nearest_neighbor_interp_np,
}


class TestInterpolateOp(OpTest):
    def setUp(self):
        self.out_size = None
        self.init_test_case()
        self.op_type = "interpolate"
        input_np = np.random.random(self.input_shape).astype("float32")

        output_np = INTERPOLATE_FUNCS[self.interp_method](
            input_np, self.out_h, self.out_w, self.out_size)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'interp_method': self.interp_method
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', in_place=True)

    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [2, 3, 4, 4]
        self.out_h = 2
        self.out_w = 2
        self.out_size = np.array([3, 3]).astype("int32")


class TestBilinearInterpCase1(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1


class TestBilinearInterpCase2(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 12
        self.out_w = 12


class TestBilinearInterpCase3(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [1, 1, 128, 64]
        self.out_h = 64
        self.out_w = 128


class TestBilinearInterpCase4(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.out_size = np.array([2, 2]).astype("int32")


class TestBilinearInterpCase5(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 12
        self.out_w = 12
        self.out_size = np.array([11, 11]).astype("int32")


class TestBilinearInterpCase6(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [1, 1, 128, 64]
        self.out_h = 64
        self.out_w = 128
        self.out_size = np.array([65, 129]).astype("int32")


# class TestBilinearInterpBigScale(TestInterpolateOp):
#     def init_test_case(self):
#       self.interp_method = 'bilinear'
#       self.input_shape = [32, 16, 128, 64]
#       self.out_h = 200
#       self.out_w = 100
#       self.out_size = np.array([201, 101]).astype('int32')


class TestInterpolateOpUint8(OpTest):
    def setUp(self):
        self.out_size = None
        self.init_test_case()
        self.op_type = "interpolate"
        input_np = np.random.randint(
            low=0, high=256, size=self.input_shape).astype("uint8")
        output_np = INTERPOLATE_FUNCS[self.interp_method](
            input_np, self.out_h, self.out_w, self.out_size)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'interp_method': self.interp_method
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output_with_place(place=core.CPUPlace(), atol=1)

    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [1, 3, 9, 6]
        self.out_h = 10
        self.out_w = 9


class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [2, 3, 128, 64]
        self.out_h = 120
        self.out_w = 50


class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
    def init_test_case(self):
        self.interp_method = 'bilinear'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 5
        self.out_w = 13
        self.out_size = np.array([6, 15]).astype("int32")


class TestNearestNeighborInterpCase1(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1


class TestNearestNeighborInterpCase2(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 12
        self.out_w = 12


class TestNearestNeighborInterpCase3(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [1, 1, 128, 64]
        self.out_h = 64
        self.out_w = 128


class TestNearestNeighborInterpCase4(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.out_size = np.array([2, 2]).astype("int32")


class TestNearestNeighborInterpCase5(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 12
        self.out_w = 12
        self.out_size = np.array([11, 11]).astype("int32")


class TestNearestNeighborInterpCase6(TestInterpolateOp):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [1, 1, 128, 64]
        self.out_h = 64
        self.out_w = 128
        self.out_size = np.array([65, 129]).astype("int32")


class TestNearestNeighborInterpCase1Uint8(TestInterpolateOpUint8):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [2, 3, 128, 64]
        self.out_h = 120
        self.out_w = 50


class TestNearestNeighborInterpCase2Uint8(TestInterpolateOpUint8):
    def init_test_case(self):
        self.interp_method = 'nearest'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 5
        self.out_w = 13
        self.out_size = np.array([6, 15]).astype("int32")


if __name__ == "__main__":
    unittest.main()