lod_tensor.cc 8.2 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/framework/lod_tensor.h"
武毅 已提交
16 17
#include "paddle/framework/data_type.h"
#include "paddle/framework/framework.pb.h"
18 19 20 21 22 23 24 25

#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29 30 31

#include <glog/logging.h>

namespace paddle {
namespace framework {

武毅 已提交
32
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
33
  os << "{";
武毅 已提交
34
  for (auto &v : lod) {
35
    os << "{";
武毅 已提交
36
    for (auto &i : v) {
37 38 39 40 41 42 43 44 45
      os << i << ",";
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
46 47 48
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

49 50 51 52 53 54 55 56 57 58 59
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
    framework::Copy(t, platform::CPUPlace(), &tt);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

武毅 已提交
72
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
73
                 size_t elem_end) {
74 75 76 77 78 79 80 81 82
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
83 84 85
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
86 87
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
88
  }
89 90 91 92
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
93
    for (auto &ele : res[lvl]) {
94 95 96 97 98 99
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
100
LoD ToAbsOffset(const LoD &in) {
101 102 103 104
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
  for (int level = result.size() - 2; level >= 0; level--) {
武毅 已提交
105
    for (auto &ele : result[level]) {
106 107 108 109
      ele = result[level + 1][ele];
    }
  }
  return result;
110 111
}

武毅 已提交
112
bool operator==(const LoD &a, const LoD &b) {
113 114 115 116 117
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
118 119
    const auto &a_level = a[i];
    const auto &b_level = b[i];
120 121 122 123 124 125 126 127 128 129
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
130 131
}

132
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
133
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
134 135 136 137 138 139
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
140 141 142 143
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
144
    sub_lod.emplace_back(level_lens);
145 146 147
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
148 149

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
150 151
}

武毅 已提交
152
void AppendLoD(LoD *lod, const LoD &lod_length) {
153 154
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
155
      "The lod_length should has the same size with the appended lod.");
156
  if (lod->empty()) {
Y
Yang Yu 已提交
157 158 159
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
160 161
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
162
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
163
    auto &level = (*lod)[i];
164 165 166 167 168 169
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
170 171
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
172
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
173 174 175
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
176 177 178 179 180 181
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
182 183 184 185 186 187 188 189 190 191 192
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
193 194
  // the 3st field, Tensor
  SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
195 196
}

Y
Yancey 已提交
197 198
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
199
  {
Y
Yancey 已提交
200
    // the 1st field, unit32_t version for LoDTensor
201 202 203
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
204
  }
205 206
  {
    // the 2st field, LoD information
武毅 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
220
  // the 3st filed, Tensor
Y
Yancey 已提交
221
  DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
222 223
}

224
// TODO(tonyyang-svail): make this function support LoD
Y
Yang Yang 已提交
225 226 227 228 229 230 231 232
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
  PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
  PADDLE_ENFORCE(dims()[0] % places.size() == 0,
                 "Batch size should be divided by places size");

  std::vector<LoDTensor> lods;
Y
Yang Yu 已提交
233
  for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
234 235
    int begin = place_idx * dims()[0] / places.size();
    int end = (place_idx + 1) * dims()[0] / places.size();
Y
Yang Yang 已提交
236

237
    auto src = Slice(begin, end);
Y
Yang Yang 已提交
238
    auto &dst_place = places[place_idx];
239 240
    LoDTensor dst;
    framework::Copy(src, dst_place, &dst);
Y
Yang Yang 已提交
241 242 243 244 245 246 247

    lods.emplace_back(dst);
  }

  return lods;
}

248
// TODO(tonyyang-svail): make this function support LoD
Y
Yang Yang 已提交
249
void LoDTensor::MergeLoDTensor(
250 251
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
252 253 254
  PADDLE_ENFORCE(!lod_tensors.empty());
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
255
  auto new_layout = lod_tensors[0]->layout();
Y
Yang Yang 已提交
256 257 258
  for (auto *lod : lod_tensors) {
    PADDLE_ENFORCE(new_dim == lod->dims());
    PADDLE_ENFORCE(new_type == lod->type());
259
    PADDLE_ENFORCE(new_layout == lod->layout());
Y
Yang Yang 已提交
260 261 262
  }
  new_dim[0] *= lod_tensors.size();
  Resize(new_dim);
263
  set_layout(new_layout);
Y
Yang Yang 已提交
264

265 266
  mutable_data(dst_place, new_type);
  int begin = 0;
Y
Yang Yang 已提交
267
  for (auto *src : lod_tensors) {
268 269 270 271
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
    framework::Copy(*src, dst_place, &dst);
    begin = end;
Y
Yang Yang 已提交
272 273 274
  }
}

275 276
}  // namespace framework
}  // namespace paddle