gemm_conv2d_op.h 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
H
hedaoyuan 已提交
28
class GemmConv2DKernel : public framework::OpKernel {
29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
32 33 34 35
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
36 37 38 39 40
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
41
    int groups = context.Attr<int>("groups");
42 43 44

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
45 46 47
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
48 49 50 51 52 53
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
54
    // use col_shape in the im2col calculation
H
hedaoyuan 已提交
55 56
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
57 58
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
H
hedaoyuan 已提交
59
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
60
        output_height * output_width};
H
hedaoyuan 已提交
61
    Tensor col;
H
hedaoyuan 已提交
62
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
63 64 65 66 67
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
68 69 70

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
H
hedaoyuan 已提交
71 72
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
73 74 75 76 77
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};

H
hedaoyuan 已提交
78
    // convolution operator: im2col + gemm
H
hedaoyuan 已提交
79 80
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
81
    for (int i = 0; i < batch_size; i++) {
82 83
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
H
hedaoyuan 已提交
84 85
      for (int g = 0; g < groups; g++) {
        // im2col
86
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
87 88
        im2col(context.device_context(), in_slice, col, strides[0], strides[1],
               paddings[0], paddings[1]);
H
hedaoyuan 已提交
89 90

        // gemm
91
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
92
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
93 94
        math::matmul<Place, T>(context.device_context(), filter_slice, false,
                               col_matrix, false, T(1.0), &out_slice, T(0.0));
H
hedaoyuan 已提交
95
      }
96 97 98 99 100
    }
  }
};

template <typename Place, typename T>
H
hedaoyuan 已提交
101
class GemmConvGrad2DKernel : public framework::OpKernel {
102 103
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
104 105 106 107 108
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
109
    Tensor* filter_grad =
H
hedaoyuan 已提交
110
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
111 112 113 114 115

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
116 117 118

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
119
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
120 121 122

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
123 124
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
125
    int output_channels = output_grad->dims()[1];
H
hedaoyuan 已提交
126 127 128 129 130 131 132 133 134
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
135
    // use col_shape in the im2col and col2im calculation
136 137
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
138 139
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
140
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
141 142
        output_height * output_width};
    Tensor col;
H
hedaoyuan 已提交
143
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
144 145 146 147 148
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
H
hedaoyuan 已提交
149 150 151 152 153 154 155

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};

H
hedaoyuan 已提交
156 157
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
158 159
    filter.Resize(filter_matrix_shape);

H
hedaoyuan 已提交
160 161
    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
162 163
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
H
hedaoyuan 已提交
164 165 166 167 168 169 170 171 172 173 174 175

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
176
          // gemm
H
hedaoyuan 已提交
177 178
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
179 180
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
181
          math::matmul<Place, T>(context.device_context(), filter_slice, true,
H
hedaoyuan 已提交
182 183
                                 out_grad_slice, false, T(1.0), &col_matrix,
                                 T(0.0));
184 185 186 187

          // col2im
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
188 189
          col2im(context.device_context(), in_grad_slice, col, strides[0],
                 strides[1], paddings[0], paddings[1]);
190
        }
H
hedaoyuan 已提交
191 192
      }
    }
193

H
hedaoyuan 已提交
194 195 196 197 198 199 200 201 202 203 204 205
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
206
          // im2col
H
hedaoyuan 已提交
207 208
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
209
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
210 211
          im2col(context.device_context(), in_slice, col, strides[0],
                 strides[1], paddings[0], paddings[1]);
212 213 214

          // gemm
          Tensor filter_grad_slice =
H
hedaoyuan 已提交
215
              filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
216 217 218
          math::matmul<Place, T>(context.device_context(), out_grad_slice,
                                 false, col_matrix, true, T(1.0),
                                 &filter_grad_slice, T(1.0));
219
        }
220
      }
H
hedaoyuan 已提交
221
    }
222 223 224 225 226
  }
};

}  // namespace operators
}  // namespace paddle