jit_kernel_rnn.cc 20.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/macros.h"
T
tensor-tang 已提交
20

T
tensor-tang 已提交
21 22 23
namespace paddle {
namespace operators {
namespace math {
T
tensor-tang 已提交
24
namespace jitkernel {
T
tensor-tang 已提交
25
namespace detail {
T
tensor-tang 已提交
26 27
#ifdef __AVX__
__m256 ExpAVX(__m256 x);
T
tensor-tang 已提交
28
#endif
T
tensor-tang 已提交
29

T
tensor-tang 已提交
30 31 32 33 34 35
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x);
#endif

}  // namespace detail

T
tensor-tang 已提交
36 37
namespace jit = platform::jit;

T
tensor-tang 已提交
38 39 40 41 42 43 44 45 46
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;

class AVXAct {
 public:
  virtual ~AVXAct() = default;
  virtual __m256 Compute(__m256 x) const = 0;
};

T
tensor-tang 已提交
47
template <act_type type, jit::cpu_isa_t isa>
T
tensor-tang 已提交
48 49 50 51 52
class AVXActImpl : public AVXAct {
 public:
  __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};

T
tensor-tang 已提交
53 54 55 56 57 58 59 60 61 62 63
#define AVX_SIGMOID(isa, expisa)                                 \
  template <>                                                    \
  __m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const {    \
    __m256 ones = _mm256_set1_ps(1.0f);                          \
    x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
    x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
    x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x);                  \
    x = expisa(x);                                               \
    x = _mm256_add_ps(ones, x);                                  \
    return _mm256_div_ps(ones, x);                               \
  }
T
tensor-tang 已提交
64

T
tensor-tang 已提交
65 66 67 68 69 70 71 72 73 74 75
#define AVX_TANH(isa, expisa)                              \
  template <>                                              \
  __m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
    __m256 ones = _mm256_set1_ps(1.0f);                    \
    x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x);           \
    x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT));   \
    x = expisa(x);                                         \
    x = _mm256_add_ps(ones, x);                            \
    x = _mm256_div_ps(_mm256_set1_ps(2.0f), x);            \
    return _mm256_sub_ps(x, ones);                         \
  }
T
tensor-tang 已提交
76

T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#define AVX_RELU(isa)                                      \
  template <>                                              \
  __m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
    return _mm256_max_ps(x, _mm256_setzero_ps());          \
  }

#define AVX_IDENTITY(isa)                                      \
  template <>                                                  \
  __m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
    return x;                                                  \
  }

#define FOR_EACH_AVX_ISA(macro_) \
  macro_(jit::avx);              \
  macro_(jit::avx2);             \
  macro_(jit::avx512f)

FOR_EACH_AVX_ISA(AVX_RELU);
FOR_EACH_AVX_ISA(AVX_IDENTITY);

AVX_SIGMOID(jit::avx, detail::ExpAVX);
AVX_TANH(jit::avx, detail::ExpAVX);

#ifdef __AVX2__
AVX_SIGMOID(jit::avx2, detail::ExpAVX2);
AVX_SIGMOID(jit::avx512f, detail::ExpAVX2);
AVX_TANH(jit::avx2, detail::ExpAVX2);
AVX_TANH(jit::avx512f, detail::ExpAVX2);
#endif

#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
T
tensor-tang 已提交
112 113 114

#endif

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <typename T>
static std::shared_ptr<const VActKernel<T>> GetActKernel(
    const std::string& type, int n) {
  if (type == "sigmoid") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
  } else if (type == "relu") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VReluKernel<T>>(n));
  } else if (type == "tanh") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VTanhKernel<T>>(n));
  } else if (type == "identity" || type == "") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}

T
tensor-tang 已提交
135
#ifdef __AVX__
T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <jit::cpu_isa_t isa>
static std::unique_ptr<AVXAct> GetAVXAct(const std::string& type) {
  if (type == "sigmoid") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>());
  } else if (type == "relu") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>());
  } else if (type == "tanh") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>());
  } else if (type == "identity" || type == "") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>());
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}
T
tensor-tang 已提交
150
#endif
T
tensor-tang 已提交
151

T
tensor-tang 已提交
152 153 154 155
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
T
tensor-tang 已提交
156
  explicit LSTMKernelImpl(const std::string& act_gate,
T
tensor-tang 已提交
157
                          const std::string& act_cand,
T
tensor-tang 已提交
158
                          const std::string& act_cell, int d)
T
tensor-tang 已提交
159 160 161 162
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
163 164 165 166
    act_gate_d3_ = GetActKernel<T>(act_gate, d3_);
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
167 168 169 170
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
  }

171
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
172
                   T* checked) const override {
T
tensor-tang 已提交
173
    // gates: W_ch, W_ih, W_fh, W_oh
174
    act_gate_d3_->Compute(gates + d_, gates + d_);
T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
185
  }
186 187 188 189 190 191 192 193 194 195
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* H_t = act_cell(C_t) * ogated */
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
196 197 198

 private:
  int d_, d2_, d3_;
199 200
  std::shared_ptr<const VActKernel<T>> act_gate_d3_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
201 202
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
T
tensor-tang 已提交
203 204 205
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
#endif
T
tensor-tang 已提交
206 207
};

T
tensor-tang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#define INTRI8_FLOAT(isa)                                                    \
  template <>                                                                \
  LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl(                          \
      const std::string& act_gate, const std::string& act_cand,              \
      const std::string& act_cell, int d)                                    \
      : LSTMKernel<float>() {                                                \
    avx_act_gate_ = GetAVXAct<isa>(act_gate);                                \
    avx_act_cand_ = GetAVXAct<isa>(act_cand);                                \
    avx_act_cell_ = GetAVXAct<isa>(act_cell);                                \
  }                                                                          \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt(                        \
      float* gates, const float* ct_1, float* ct, float* ht,                 \
      const float* wp_data, float* checked) const {                          \
    /* gates: W_ch, W_ih, W_fh, W_oh */                                      \
    __m256 c, i, f, o;                                                       \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    f = _mm256_loadu_ps(gates + 16);                                         \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = C_t-1 * fgated + cand_gated * igated*/                          \
    c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
    i = _mm256_loadu_ps(ct_1);                                               \
    f = _mm256_mul_ps(i, avx_act_gate_->Compute(f));                         \
    f = _mm256_add_ps(c, f);                                                 \
    _mm256_storeu_ps(ct, f);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
  }                                                                          \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1(                        \
      float* gates, float* ct, float* ht, const float* wp_data) const {      \
    __m256 c, i, o;                                                          \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = igated * cgated*/                                               \
    c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
    _mm256_storeu_ps(ct, c);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264
  }

// TODO(TJ): optimize keq16

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
265 266 267 268 269 270 271 272 273 274 275
/* Peephole JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class PeepholeKernelImpl : public LSTMKernel<T> {
 public:
  explicit PeepholeKernelImpl(const std::string& act_gate,
                              const std::string& act_cand,
                              const std::string& act_cell, int d)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
276 277 278
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
279 280
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
281 282
    vadd_d2_ = KernelPool::Instance().template Get<VAddKernel<T>>(d2_);
    act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
T
tensor-tang 已提交
283 284
  }

285
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
286
                   T* checked) const override {
287 288 289 290 291 292
    /* get fgated and igated*/
    vmul_d_->Compute(wp_data, ct_1, checked);
    vmul_d_->Compute(wp_data + d_, ct_1, checked + d_);
    vadd_d2_->Compute(checked, gates + d_, gates + d_);
    act_gate_d2_->Compute(gates + d_, gates + d_);
    /* C_t = C_t-1 * fgated + cand_gated * igated*/
T
tensor-tang 已提交
293 294 295 296
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);
297 298 299 300 301 302 303 304
    /* get ogated*/
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
305

306 307 308 309 310 311 312 313
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* get outgated, put W_oc * C_t on igated */
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
T
tensor-tang 已提交
314
    /* H_t = act_cell(C_t) * ogated */
315
    act_gate_d_->Compute(gates + d3_, gates + d3_);
T
tensor-tang 已提交
316 317 318
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
319

T
tensor-tang 已提交
320 321
 private:
  int d_, d2_, d3_;
322 323
  std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
324
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
325
  std::shared_ptr<const VAddKernel<T>> vadd_d_, vadd_d2_;
T
tensor-tang 已提交
326 327 328 329 330 331 332 333 334
};

#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                  \
  template <>                                                         \
  std::shared_ptr<const LSTMKernel<ker_dtype>>                        \
  KernelPool::Get<LSTMKernel<ker_dtype>, const std::string&,          \
                  const std::string&, const std::string&, int, bool>( \
      const std::string& act_gate, const std::string& act_cand,       \
      const std::string& act_cell, int d, bool use_peephole)
T
tensor-tang 已提交
335

T
tensor-tang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key)                               \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell + \
                                       (use_peephole ? "p" : "n")

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                    \
  if (use_peephole) {                                                  \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<PeepholeKernelImpl<dtype, isa, k>>(           \
            act_gate, act_cand, act_cell, d));                         \
  } else {                                                             \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_cand, \
                                                   act_cell, d));      \
  }
T
tensor-tang 已提交
350 351 352 353

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

T
tensor-tang 已提交
354
#undef INTRI8_FLOAT
T
tensor-tang 已提交
355 356 357
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

/* GRU JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class GRUKernelImpl : public GRUKernel<T> {
 public:
  explicit GRUKernelImpl(const std::string& act_gate,
                         const std::string& act_state, int d)
      : GRUKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_state_d_ = GetActKernel<T>(act_state, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
  }

  void ComputeH1(T* gates, T* ht) const override {
    act_gate_d_->Compute(gates, gates);
    act_state_d_->Compute(gates + d2_, gates + d2_);
    vmul_d_->Compute(gates, gates + d2_, ht);
  }
T
tensor-tang 已提交
379

T
tensor-tang 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  void ComputeHtPart1(T* gates, const T* ht_1, T* ht) const override {
    // W: {W_update, W_reset; W_state}
    act_gate_d2_->Compute(gates, gates);
    vmul_d_->Compute(ht_1, gates + d_, ht);
  }

  void ComputeHtPart2(T* gates, const T* ht_1, T* ht) const override {
    T* y = gates + d2_;
    act_state_d_->Compute(y, y);
    // out = zt*ht~ + (1-zt)*ht_1
    for (int i = 0; i < d_; ++i) {
      ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
    }
  }

 private:
  int d_, d2_;
  std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_state_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
T
tensor-tang 已提交
399 400 401
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_state_;
#endif
T
tensor-tang 已提交
402 403
};

T
tensor-tang 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
#define INTRI8_FLOAT(isa)                                                     \
  template <>                                                                 \
  GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl(                             \
      const std::string& act_gate, const std::string& act_state, int d)       \
      : GRUKernel<float>() {                                                  \
    avx_act_gate_ = GetAVXAct<isa>(act_gate);                                 \
    avx_act_state_ = GetAVXAct<isa>(act_state);                               \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht)    \
      const {                                                                 \
    __m256 u, s;                                                              \
    /* W: {W_update, W_reset; W_state} */                                     \
    u = _mm256_loadu_ps(gates);                                               \
    s = _mm256_loadu_ps(gates + 16);                                          \
    s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
    _mm256_storeu_ps(ht, s);                                                  \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1(                       \
      float* gates, const float* ht_1, float* ht) const {                     \
    /* not exactly equal the any implementation */                            \
    __m256 r, ht0;                                                            \
    r = _mm256_loadu_ps(gates + 8);                                           \
    ht0 = _mm256_loadu_ps(ht_1);                                              \
    r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0);                        \
    _mm256_storeu_ps(ht, r);                                                  \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2(                       \
      float* gates, const float* ht_1, float* ht) const {                     \
    /* not exactly equal the any implementation */                            \
    __m256 u, s, ht0;                                                         \
    u = _mm256_loadu_ps(gates);                                               \
    s = _mm256_loadu_ps(gates + 16);                                          \
    ht0 = _mm256_loadu_ps(ht_1);                                              \
    u = avx_act_gate_->Compute(u);                                            \
    s = _mm256_mul_ps(u, avx_act_state_->Compute(s));                         \
    u = _mm256_sub_ps(_mm256_set1_ps(1.f), u);                                \
    u = _mm256_mul_ps(u, ht0);                                                \
    u = _mm256_add_ps(s, u);                                                  \
    _mm256_storeu_ps(ht, u);                                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype)                       \
  template <>                                                             \
  std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get<            \
      GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
      const std::string& act_gate, const std::string& act_state, int d)

#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_state

#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
  p = std::dynamic_pointer_cast<ker<dtype>>(       \
      std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));

REGISTER_JITKERNEL_ARGS(gru, GRUKernel, JITKERNEL_DECLARE_GRU,
                        JITKERNEL_KEY_GRU, JITKERNEL_NEW_GRU_IMPL);

T
tensor-tang 已提交
474
#undef INTRI8_FLOAT
T
tensor-tang 已提交
475 476 477
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
T
tensor-tang 已提交
478 479 480 481
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle