sum_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13
#include <vector>
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
27

Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30 31
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
32
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
33 34
      return;  // skip runtime infershape when is tensor array;
    }
35

36
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
37
    size_t N = x_dims.size();
Q
qijun 已提交
38
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
39

40 41 42 43 44 45 46 47 48 49
    framework::DDim in_dim({0});
    for (auto& x_dim : x_dims) {
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
50
    }
Q
Qiao Longfei 已提交
51 52
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
53
  }
54 55

 protected:
56
  framework::OpKernelType GetExpectedKernelType(
57 58 59
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
      int dtype = -1;
      for (auto& x_var : x_vars) {
        auto& lod_tensor = x_var->Get<framework::LoDTensor>();
        if (lod_tensor.numel() == 0) {
          continue;
        }
        if (dtype == -1) {
          dtype = framework::ToDataType(lod_tensor.type());
        } else {
          PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type()));
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

75
      return framework::OpKernelType(
76 77
          static_cast<framework::proto::VarType::Type>(dtype),
          ctx.device_context());
78
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
79 80 81 82 83 84 85 86 87 88
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
          return framework::OpKernelType(framework::ToDataType(value.type()),
                                         ctx.device_context());
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
                                     ctx.device_context());
89
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
90 91 92 93 94 95 96
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
            return framework::OpKernelType(framework::ToDataType(each.type()),
                                           ctx.device_context());
          }
97 98
        }
      }
Y
Yang Yang(Tony) 已提交
99
      PADDLE_THROW("Cannot find the input data type by all input data");
100 101 102 103
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
104 105 106 107
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
108
  SumOpMaker(OpProto* proto, OpAttrChecker* op_checker)
109
      : OpProtoAndCheckerMaker(proto, op_checker) {
110 111 112
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
113
    AddComment(R"DOC(
114
Sum operator.
115

116 117
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
118
the LoD information with the first input.
119
)DOC");
120 121 122
  }
};

Q
QI JUN 已提交
123 124
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
125 126
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
QI JUN 已提交
127
    auto& inputs = op_desc.Input("X");
128
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
Q
QI JUN 已提交
129

Y
Yang Yang(Tony) 已提交
130 131
    for (auto& name : op_desc.Input("X")) {
      VLOG(10) << name << " "
Y
Yang Yu 已提交
132
               << block->FindRecursiveOrCreateVar(name).GetType();
Y
Yang Yang(Tony) 已提交
133 134
    }

Q
QI JUN 已提交
135 136
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yu 已提交
137
          return block->FindRecursiveOrCreateVar(name).GetType() ==
138
                 framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
139
        });
140 141

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yu 已提交
142
      return block->FindRecursiveOrCreateVar(name).GetType() ==
143
             framework::proto::VarType::LOD_TENSOR_ARRAY;
144 145 146 147 148 149 150 151
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
152 153 154 155
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
Y
Yang Yu 已提交
156
             << block->FindRecursiveOrCreateVar(each).GetType() << "\n";
Y
Yang Yang(Tony) 已提交
157 158 159 160
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
161
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
162
    } else if (any_input_is_lod_tensor) {
163
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
164 165 166
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yu 已提交
167
    auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
Y
Yang Yang(Tony) 已提交
168 169 170
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
171 172 173
  }
};

174
class SumGradMaker : public framework::GradOpDescMakerBase {
175
 public:
176
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
177

Y
Yu Yang 已提交
178
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
179
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
180
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
181 182 183 184
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
185
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
186 187 188 189
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
190
                     return std::unique_ptr<framework::OpDesc>(grad_op);
191 192
                   });
    return grad_ops;
193 194 195 196 197 198 199
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
200

Q
QI JUN 已提交
201 202
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Q
QI JUN 已提交
203 204 205 206 207
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);